• Title/Summary/Keyword: Combat Model

Search Result 295, Processing Time 0.029 seconds

A Study on the Terrain Information Effects in Combat Simulation (전투 시뮬레이션에서의 지형정보효과에 관한 고찰)

  • Kim, Gak-Gyu;Choi, Kyung-Hwan;Lee, Sang-Heon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.11-17
    • /
    • 2012
  • The past combats depended often on a number of firepower and manpower. However, integrated decision support viewpoint from communications, surveillance, reconnaissance, intelligence and so forth in combats witnessed in the Gulf, the Middle East, and Afghanistan have changed the trends of combat. That is, the force multipliers which many support systems enhance the combat potential of the fighting forces significantly become big issues to win or not in that combat. According to changing recent combat trend, Lanchester's combat model is being challenged to develop keeping pace with the new trend. We approach this paper as mathematical modeling about how the effect of terrain affects in the combat. Terrain information is invisible, but it is necessary to consider for analysis of warfare. Additionally, tangible or intangible elements affecting to attrition coefficients are continuely reflected to the combat model from decision-makers, then it will be a model closer to the reality and very suggestive to the actual world.

A Study on Development of Wargame Model's Standard Combat Organization Function (워게임 모델의 표준전투편성 기능 개발에 관한 연구)

  • Lee, Ki-Taek;Kwon, Ojeong;Jung, Bong-Ryong
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.2
    • /
    • pp.35-46
    • /
    • 2014
  • This study investigates the wargame model application of SCO(Standard Combat Organization) concept and function for the first time. Firstly, we examine the combat organization function of wargame models suggested by published theses and research papers, and then analyze input processes and detail function of GORRAM(Ground Operation Resources Requirement Model) combat organization that is related to wargame logic. Secondly, we also reflect developed SCO algorithm and function, as follows. We defined SCO concept, and developed UI(User Interface) design and algorithm using main functions that are deducted by analyzing of existing combat organization. This algorithm consists of process, SCO, and error check algorithms. Finally, we analyzed the results of statistic verification on input time reduction and user convenience of combat organization function. Therefore, this study contributes to improving input time and user convenience of combat organization, as well as structuring new function of wargame model through the application of SCO concept and function.

A Study on Applying EINSTein Model to guerrilla warfare (EINSTein모형의 비정규전 적용에 관한 연구)

  • 이기택;강성진
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.2
    • /
    • pp.75-89
    • /
    • 2000
  • This paper deals with complex system theory to describe guerrilla warfare situation using EINSTein (Enhanced ISAAC Neural Simulation Tool) simulation model. EINSTein model is an agent-based artificial "laboratory" for exploring self-organized emergent behavior in land combat. Many studies have shown that existing Lanchester equations used in most guerrilla warfare models do not describe changes of combat units, real guerrilla warfare situation and qualitative factors in combat. Future warfare will be information warfare with various weapon system and complex combat units. We have compared and tested results with Lanchester models and EINSTein model. And the EINSTein model has been applied and analyzed to guerrilla warfare model (C4I facilities, coastal, urbanized terrain critical facilities defense). The results show that the EINSTein model has a possibility to apply and analyze guerrilla warfare more properly than Lanchester models.

  • PDF

The Target Modeling and The Shot Line Analysis System to Assess Vulnerability of the Ground Combat Vehicle (지상전투차량 취약성 평가를 위한 표적 모델링과 피격선 분석 시스템)

  • Yoo, Chul;Jang, Eun Su;Park, Kang;Choi, Sang Yeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.238-245
    • /
    • 2015
  • Vulnerability assessment is a process to calculate the damage degree of a combat vehicle when the combat vehicle is attacked by an enemy. When the vehicle is hit, it is necessary to analyze the shot line to calculate which components are damaged and judge whether the armor of the vehicle is penetrated by enemy's warhead. To analyze the shot line efficiently, this paper presents the target modeling and the shot line analysis system to assess vulnerability of the ground combat vehicle. This system is easily able to do several functions: 1) the program reads STL files converted from CAD model which is designed by commercial CAD software. 2) It calculates the intersection between triangle of STL mesh and the shot line, and check if the components of the model are penetrated. 3) This program can visualize the results using OpenGL. The vulnerability assessment using the shot line analysis can be used to model the armor of the combat vehicle and arrange the inner components effectively in the early stage of development of the combat vehicle.

A Proposal of Combat Power Measurement Model of Army Warfare Information System Using Network Power based on Social Network Analysis (SNA 기반 네트워크 파워를 이용한 지상전장정보체계 전투력 효과측정 모델제안)

  • Jung, Chi-Young;Lee, Jae-Yeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.4
    • /
    • pp.1-16
    • /
    • 2011
  • It is important not only to introduce the C4I(Command and Control, Communication, Computer, Intelligence) system for realizing the NCW(Network Centric Warfare) but also to evaluate the synergistic effect by the C4I system. However, the study effort for evaluating the system's synergistic effect is insufficient compared with introducing the system. Therefore, in this paper, we proposed a model that measures the synergistic effect of combat power by the warfare information system. To measure the synergistic effect of warfare information system, the network power must be considered, so we also proposed a new methodology for measurement of network power based on SNA(Social Network Analysis), not Metcalfe's law. A model we proposed is a model that measures the raised combat power by the network effectiveness. The methodology and model we proposed in this paper will be used usefully to analyze the practical effect of constructing future warfare information system.

PSEUDO-RELIABILITY MODEL OF COMBAT TANK SYSTEM

  • Lie, Chang-Hoon
    • Journal of the military operations research society of Korea
    • /
    • v.3 no.1
    • /
    • pp.137-150
    • /
    • 1977
  • The effectiveness of an actual combat tank system is analyzed. A measure of effectiveness which includes performance and reliability called pseudo-reliability is introduced. A model is introduced to optimize the design of the system in which the system pseudo-reliability is maximized subject to cost constraint. This model is a nonlinear programming problem and is solved by the sequential unconstrained minimization technique (SUMT). A numerical exampl with actual data from the test evaluation of five combat tanks is used to illustrate the model.

  • PDF

Developing an Expert System for Close Combat using Decision Tree (의사결정나무를 이용한 근접전투전문가시스템)

  • Kim, Hyung-Se;Moon, Ho-Seok;Lee, Dong-Keun;Hwang, Myung-Sang;Kim, Young-Kuk
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.3
    • /
    • pp.83-93
    • /
    • 2010
  • In this paper, we propose a new expert system for close combat in military war game model for training. Simulation logic for damage assesment is one of the main simulation functions in military war game. In Changcho 21's model which is the war game model for Republic of Korea Army corps and division, the main function of close combat's damage assessment has not been calculated by Changcho 21's model, but by COBRA which was made by US Army and has been the expert system for close combat. Results which were calculated in COBRA were sent to Changcho 21's model through a cable network. And Changcho 21's model finally calculated the value of damage assessment with the results. In this paper, we develop an new expert system for close combat using decision tree. The experimental results show that the proposed expert system has similar performance to COBRA and has less computing complexity. And it can substitute for COBRA and be applicable to battlefield.

Reconnaissance-Strike-Logistics Complex Systems for Future Warfare in the 21st Century (21세기 미래전의 정찰.타격.군수 복합체계)

  • 권태영;이재영
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper, "a conceptual model of Reconnaissance-Strike-Logistics Complex(RSLC) in future warfare" is proposed. Basic idea of the RSLC model is to combine logistics and the pre-existing Reconnaissance-Strike Complex(RSC) through a C4 network system. That is, the RSLC model consists of reconnaissance, strike, logistics, and C4 network systems. The C4 network system creates new combat power by integrating all the other systems. The RSLC model generates three conceptual complex circles; the RSC, the SLC(Strke-Logistics Complex), and the RSLC circles. The RSC circles describes direct combat behaviors in the battlefield. On the other hand, the SLC circle indicates combat sustainment capabilities. The RSLC circle including the RSC and the SLC circles, can present a more complete combat process. There are two key advantages of the RSLC model. First of all, logistics is considered one of key combat components to form IDA(Information-Decision-Action) cycle for combat decision-making process more completely. Secondly, the capabilities of battlefield awareness which reconnaissance and war-net systems provide, can be applied not only to the strike system in the RSC circle, but also to the logistics system in the SLC circle. Thus, the RSLC model can maximize combat synergy effects by integrating the RSC and the SLC. With a similar logic, this paper develops "A Revised System of Systems with Logistics (RSSL)" which combines "A New system of Systems" and logistics. These tow models proposed here help explain several issues such as logistics environment in future warfare, MOE(Measure of Effectiveness( on logistics performance, and COA(Course of Actions) for decreasing mass and increasing velocity. In particular, velocity in logistics is emphasized.

  • PDF

A Study on the Analysis of NCW(Network Centric Warfare) Combat Effectiveness Using Cellular Automata Simulation (세포 자동차(Cellular Automata) 시뮬레이션을 이용한 네트워크 중심전 전투효과도 평가 연구)

  • Jeong, Seong-Jin;Jo, Seong-Jin;Hong, Seong-Pil
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.3-9
    • /
    • 2005
  • The recent notion of Network Centric Warfare (NCW) emphasizes the ability to distribute right information at the right time to maximize the combat effectiveness. Accordingly, in the modern combat system the importance of non-physical element, such as communication system is increasing. However, an NCW-support communication network system is expensive. Therefore, it is essential to develop a proper combat system evaluation method to establish an efficient NCW-support combat system. Traditionally, combat system effectiveness is measured in terms of physical elements such as men and fire power. Obviously, such method is hardly applicable to a modern combat system To overcome this difficulty, we propose an evaluation model based on CA (Cellular Automata) simulation. A set of preliminary combat simulations show that CA simulation may be promising in evaluating non-physical element of a modem combat system.

  • PDF

A Study on the Analysis of NCW (Network Centric Warfare) Combat Effectiveness Using Cellular Automata Simulation (세포 자동차 시뮬레이션을 이용한 네트워크 중심전 전투효과도 평가 연구)

  • Chung Sung-jin;Cho Sung-jin;Hong Sung-Pil
    • Korean Management Science Review
    • /
    • v.22 no.2
    • /
    • pp.135-145
    • /
    • 2005
  • The recent notion of Network Centric Warfare (NCW) emphasizes the ability to distribute the right information at the right time to maximize the combat effectiveness. Accordingly, in the modern combat system, the importance of non-physical elements, such as a communication system, is increasing. However, an NCW-support communication network system is expensive. Therefore, it is essential to develop a proper combat system evaluation method to establish an efficient NCW-support combat system. Traditionally, combat system effectiveness is measured in terms of physical elements such as men and fire power, Obviously, such method is hardly applicable to a modern combat system. To overcome this difficulty, we propose an evaluation model based on CA (Cellular Automata) simulation. A set of preliminary combat simulations show that CA simulation may be promising in evaluating non-physical element of a modern combat system.