• 제목/요약/키워드: Column reactor system

검색결과 55건 처리시간 0.02초

반연속 흐름 2단 토양 컬럼에서의 사염화 에틸렌(PCE)의 혐기성 환원탈염소화 (Anaerobic Reductive Dechlorination of Tetrachloroethylene (PCE) in Two-in-series Semi-continuous Soil Columns)

  • 안영호;최정동;김영;권수열;박후원
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권2호
    • /
    • pp.68-76
    • /
    • 2006
  • 실험실 규모의 반연속 흐름 2단 토양컬럼을 이용하여 사염화에틸렌(PCE)에서 에틸렌으로의 혐기성 환원 탈염소화 반응특성을 조사하였다. 국내의 TCE로 오염된 현장에서 토양을 채취하여 컬럼 반응조에 충진하고, lactate(전자공여체 그리고/혹은 탄소원으로서)와 PCE를 함유한 현장 지하수를 컬럼 반응조로 주입하였다. 운전초기 약 50일 경과기간 동안 유입 lactate와 PCE의 질량비는 620:1이었는데, 이때 PCE에서 cis-DCE로의 불완전한 환원성 탈염소화가 관찰되었다. 그러나 유입 lactate와 PCE의 질량비를 5,050:1로 증가시킨 두번째 운전기간동안 PCE에서 ethylene로의 완벽한 탈염소화를 관찰할 수 있었는데, 이는 초기 운전기간 동안의 적절한 전자공여체의 공급의 중요성을 보여 주었다. PCE에서 cis-DCE로의 탈염소화율은 $0.62{\sim}1.94\;{\mu}mol$ PCE/L pore volume/d이었고, cis-DCE에서 ethylene으로의 탈염소화율은 $2.76\;{\mu}mol$ cis-DCE/L pore volume/d으로 나타났다. 전체 시스템에서의 PCE에서 ethylene으로의 전환율은 $1.43\;{\mu}mol$ PCE/L pore volume/d이었다. 본 실험에서 PCE에서 cis-DCE로의 분해단계에서 수소의 농도는 $10{\sim}64\;mM$, 그리고 cis-DCE에서 에틸렌으로의 분해단계에서 수소의 농도는 $22{\sim}29\;mM$이었다. 본 연구에서의 이러한 긍정적인 실험 결과는 본 연구에서 조사된 TCE로 오염된 지하수의 현장 생물학적 복원을 위해 혐기성 환원 탈염소화 공정의 적용 가능성을 보여준다.

열을 발생하는 Debris층에서의 강제대류 Dryout 열유속 (Forced Flow Dryout Heat Flux in Heat Generating Debris Bed)

  • Cha, Jong-Hee;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.273-280
    • /
    • 1986
  • 이 연구의 목적은 가혹한 사고후 손상된 원자로심을 모의한 열을 발생하는 데브리층에서의 강제대류 드라이아웃 열유속을 실험적으로 얻고져 한 것이다. 이 연구에서 냉각재 순환장치를 사용하여 대기압하에서 냉각재가 상향 강제대류하는 유도 가열된 강구 입자층에서의 드라이아웃 열유속을 얻었다. 이 실험에서는 주로 강제대류 드라이아웃에 대한 질량유속.입자크기.입자층의 높이 및 냉각재의 서브클링의 영향이 관찰되었다. 실험은 입자직경이 1.5, 2.5, 3.0 및 4.0mm의 탄소강입자를 55mm 내경의 Pyrex 유리용기에 넣어 고주파유도 전류를 통해 가열하여 이루어졌다. 냉각재로서 증류수를 질량유속 0~3.5kg/$m^2$s로 변화시키어 공금하고 층의 높이는 55mm와 110mm, 냉각재 유입온도는 2$0^{\circ}C$와 8$0^{\circ}C$로 변화시켰다. 주요 실험결과는 다음과 같다. (1) 드라이아웃 열유속은 상향 강제 대류 질량유속과 입자크기내의 증가에 따라 증가한다. (2) 질량유속이 없는 경우 드라이아웃 열유속은 기존 연구결과와 같이 입자직경에 의존한다. (3) 얕은 입자층에서의 드라이아웃 열유속은 깊은 입자층의 것보다 얼마간 높다.

  • PDF

Hybrid-RBC와 BAF의 조합공정을 이용한 고농도 도축폐수의 처리 특성 (High Strength Slaughter Wastewater Treatment in a Novel Combined System of Hybrid-Rotating Biological Contactor and Biological Aerated Filter)

  • 정찬일;안조환;배우근;김승진
    • 대한환경공학회지
    • /
    • 제33권2호
    • /
    • pp.77-84
    • /
    • 2011
  • 본 연구에서는 부착/부유 미생물 혼재형 RBC (Rotating Biological Contactor)와 BAF (Biological Aerated Filter) 공정이 가지는 각각의 장점을 조합한 호기성 생물막 처리 시스템을 고안하여 고농도 도축폐수의 처리 특성을 평가하였다. 본 공정은 상당량의 부유 미생물이 함께 있는 RBC와 침전지 그리고 BAF 공정 순으로 구성되었다. 첫 번째 공정인 RBC와 침전지에서는 유기물의 산화, 질소의 질산화/탈질 및 부유물질의 제거가 이루어지며, 후속 공정인 BAF에서는 일부 제거되지 않은 유기물과 질소의 산화 및 부유물질의 여과가 이루어진다. 돈까스 소스(시판용)와 돼지피을 이용하여 모사한 고농도 도축폐수(TCOD $5.2{\sim}40.4g/m^2{\cdot}d$, TN $0.44{\sim}4.17g/m^2{\cdot}d$)의 처리 특성을 평가한 결과, 침전지를 포함한 RBC 공정에서 Soluble COD와 $NH_3-N$의 평균 제거율은 각각 90%와 82% 이상으로 양호하였으나 TCOD와 TN은 Suspended Solid (SS)의 대량 유출과 돼지피에서 기인한 콜로이드 물질 생성 때문에 각각 60%와 69%의 다소 낮은 제거율을 보였다. 후속 공정인 BAF가 잔존 TCOD와 TN을 제거하는 생물 반응조의 역할과 SS를 제거하는 여과기의 역할을 충분히 수행해 약 100 mg/L의 TCOD와 약 140 mg/L의 SS 추가 제거가 가능하였으나, 처리수질은 TCOD 300 mg/L, SS 180 mg/L 그리고 TN 53 mg/L로 상당히 높았다. RBC 유출수에 Polyaluminium Chloride를 투입한 결과, 침전성이 크게 향상되어 RBC+침전지 공정 유출수의 TCOD와 TN은 각각 93.8%, 25.6%의 제거율을 보였으며, BAF 유출수 수질은 TCOD 16.5 mg/L, SS 0 mg/L, NH3-N 12.0 mg/L, TP 1.3 mg/L로 우수하였다. 따라서 별도의 추가 처리공정 없이 본 연구에서 고안한 RBC+BAF 조합공정에 의한 처리만으로 고농도 도축폐수를 성공적으로 처리할 수 있었다.

연소 전 이산화탄소 회수를 위한 흡수제 및 촉매의 수력학적 특성 (Hydrodynamic Characteristics of Absorbent and Catalyst for Pre-combustion CO2 Capture)

  • 류호정;윤주영;이동호;선도원;박재현;박영성
    • 청정기술
    • /
    • 제19권4호
    • /
    • pp.437-445
    • /
    • 2013
  • 건식 이산화탄소 흡수제를 사용하는 연소 전 이산화탄소 포집용 회수증진수성가스화(sorption enhanced water gas shift, SEWGS) 시스템을 개발하기 위해 이산화탄소 흡수제의 수력학 특성을 측정 및 해석하였다. 기포유동층 조건에서 시스템을 조업하기 위해 이산화탄소 흡수제의 최소유동화속도를 측정하였으며 조업변수의 영향을 해석하였다. 최소유동화속도는 압력과 온도가 증가함에 따라 감소하였으며 층직경이 증가함에 따라 감소하는 경향을 나타내었다. 연속적인 이산화탄소 흡수-재생 조업조건을 결정하기 위해 고체순환속도에 미치는 조업변수의 영향을 측정 및 해석하였다. 고체순환속도는 10~65 kg/h 범위에서 변화시킬 수 있었으며 고체분사노즐의 유속, 재생반응기의 유속 및 고체층 높이가 증가함에 따라 증가하는 경향을 나타내었다.

초음파 주파수 및 반응조건 변화에 따른 나프탈렌 분해효율과 OH 라디칼의 발생량 비교 (Comparison of Naphthalene Degradation Efficiency and OH Radical Production by the Change of Frequency and Reaction Conditions of Ultrasound)

  • 박종성;박소영;오재일;정상조;이민주;허남국
    • 대한환경공학회지
    • /
    • 제31권2호
    • /
    • pp.79-89
    • /
    • 2009
  • 나프탈렌은 휘발성이 있는 소수성 물질로 발암유발 가능성이 있고, 수생태계에 심각한 영향을 미친다. 본 연구는 초음파의 주파수 및 반응조건별 나프탈렌 분해효율과 OH 라디칼 변화량을 조사하였다. C-18 역상칼럼을 이용한 LC/FLD (1200 series, Agilent)로 나프탈렌을 분석한 결과 MDL (Method detection limit)은 0.01 ppm이었다. 초음파 조사동안 휘발된 나프탈렌은 거의 검출되지 않았고(0.05 ppm 이하), 반응조 덮개 개폐별 나프탈렌 분해효율은 거의 차이를 보이지 않았다(1% 이내). 초음파 반응온도가 증가할수록 나프탈렌 제거효율은 감소하는 경향($15^{\circ}C$: 95% ${\rightarrow}$ $40^{\circ}C$: 85%)을 보였고, pH가 낮을수록 나프탈렌 분해효율이 증가(pH 12: 84% ${\rightarrow}$ pH 3: 95.6%)하였다. 나프탈렌 초기농도의 감소에 따라 반응속도는 증가하는 경향을 보여주었다(2.5 ppm: $27.3{\times}10^{-3}\;min^{-1}$, 5 ppm: $27.3{\times}10^{-3}\;min^{-1}$, 10 ppm : $19.0{\times}10^{-3}\;min^{-1}$). 동일한 초음파 조건(2.5 ppm 나프탈렌, 0.075 W/mL, $20^{\circ}C$, pH 6.8)에서 28 kHz의 분해효율이 132 kHz보다 약 1.46배 높았고(132 kHz: 56%, 28 kHz: 82.7%), 유사 일차반응 속도상수($k_1$)도 약 2.3배 높게 나타났다(132 kHz: $2.4{\times}10^{-3}\;min^{-1}$, 28 kHz: $5.0{\times}10^{-3}\;min^{-1}$). 초음파 조사 10분 후 $H_2O_2$ 농도는 132 kHz가 28 kHz보다 약 7.2배 높았지만(132 kHz: 0.36 ppm, 28 kHz: 0.05 ppm), 조사 90분 후에는 28 kHz가 132 kHz보다 1.1배 높았다(28 kHz: 0.45 ppm, 132 kHz: 0.4 ppm). 2.5 ppm 나프탈렌 용액에 132 kHz와 28 kHz 초음파 조사시 발생된 $H_2O_2$ 농도는 초순수에 초음파 조사한 결과보다 각각 0.1 ppm과 0.05 ppm씩 낮게 나타났다. 혼형(24 kHz)과 배스형(28 kHz) 초음파의 나프탈렌 분해효율은 각각 87%와 82.7%였고, $k_1$$22.8{\times}10^{-3}\;min^{-1}$$18.7{\times}10^{-3}\;min^{-1}$로 산출되었다. 다주파 복합형 초음파 시스템(28 kHz 배스형 + 24 kHz 혼형 초음파)의 나프탈렌 분해효율은 단일주파수 24 kHz(혼형)와 비슷한 제거효율을 보였으나(88%), $H_2O_2$의 농도는 약 3.5배 높게 조사되었다(28 kHz + 24 kHz: 2.37 ppm, 24 kHz: 0.7 ppm). 이와 같은 다주파 복합형 초음파 시스템은 OH 라디칼에 의해 산화가 잘 일어나는 물질의 분해에 매우 효과적으로 적용될 수 있을 것으로 예상된다.