DOI QR코드

DOI QR Code

Hydrodynamic Characteristics of Absorbent and Catalyst for Pre-combustion CO2 Capture

연소 전 이산화탄소 회수를 위한 흡수제 및 촉매의 수력학적 특성

  • Ryu, Ho-Jung (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Yoon, Joo-Young (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Lee, Dong-Ho (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Shun, Dowon (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Park, Jaehyeon (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Park, Yeong-Seong (Department of Environmental Engineering, Daejeon University)
  • 류호정 (한국에너지기술연구원 온실가스연구단) ;
  • 윤주영 (한국에너지기술연구원 온실가스연구단) ;
  • 이동호 (한국에너지기술연구원 온실가스연구단) ;
  • 선도원 (한국에너지기술연구원 온실가스연구단) ;
  • 박재현 (한국에너지기술연구원 온실가스연구단) ;
  • 박영성 (대전대학교 환경공학과)
  • Received : 2013.08.09
  • Accepted : 2013.09.02
  • Published : 2013.12.31

Abstract

To develop SEWGS (sorption enhanced water gas shift) system using dry $CO_2$ absorbent for pre-combustion $CO_2$ capture, hydrodynamic characteristics of $CO_2$ absorbents were measured and investigated. The minimum fluidization velocity of $CO_2$ absorbent was measured and the effects of the operating conditions were investigated to operate the system at bubbling fluidized bed condition. The minimum fluidization velocity decreased as pressure and temperature increased. Moreover, the minimum fluidization velocity decreased as column diameter increased. The effects of operating conditions on the solid circulation rate were measured and investigated to select appropriate operating conditions for continuous $CO_2$ capture and regeneration. The measured solid circulation rates were ranged between 10 and 65 kg/h and increased as the solid injection velocity, gas velocity in the regeneration reactor, and solid height increased.

건식 이산화탄소 흡수제를 사용하는 연소 전 이산화탄소 포집용 회수증진수성가스화(sorption enhanced water gas shift, SEWGS) 시스템을 개발하기 위해 이산화탄소 흡수제의 수력학 특성을 측정 및 해석하였다. 기포유동층 조건에서 시스템을 조업하기 위해 이산화탄소 흡수제의 최소유동화속도를 측정하였으며 조업변수의 영향을 해석하였다. 최소유동화속도는 압력과 온도가 증가함에 따라 감소하였으며 층직경이 증가함에 따라 감소하는 경향을 나타내었다. 연속적인 이산화탄소 흡수-재생 조업조건을 결정하기 위해 고체순환속도에 미치는 조업변수의 영향을 측정 및 해석하였다. 고체순환속도는 10~65 kg/h 범위에서 변화시킬 수 있었으며 고체분사노즐의 유속, 재생반응기의 유속 및 고체층 높이가 증가함에 따라 증가하는 경향을 나타내었다.

Keywords

References

  1. James, R., "Clean Coal technology Status: $CO_2$ Capture and Storage," Technology Briefing for Colorado Rural Electric Association, EPRI (2007).
  2. Ryu, H. J., "Selection of Process Configuration and Operating Conditions for SEWGS System," Trans. Korean Hydro. New Energy Soc., 20(2), 168-178 (2009).
  3. Ryu, H. J., Hyun, J. S., Kim, H., and Hwang, T. S., "Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor," Trans. Korean Hydro. New Energy Soc., 22(4), 465-473 (2011).
  4. Maurstad, O., "An Overview of Coal Based Integrated Gasification Combined Cycle (IGCC) Technology," MIT Report, Publication No. LFEE 2005-002 WP, pp. 1-43 (2008).
  5. Ryu, H. J., Kim, H. S., Lee, S. Y., Lee, D. H, and Kim, J. C., "Effects of Operating Variables on Sorption Capacity of $CO_2$ absorbents for SEWGS Process," Korean Chem. Eng. Res., 50(6), 994-1001 (2012). https://doi.org/10.9713/kcer.2012.50.6.994
  6. Kim, H., Lee, D. H., Lee, S. Y., Hwang T. S., and Ryu, H. J., "Reaction Characteristics of WGS Catalyst for SEWGS Process in a Pressurized Fluidized Bed Reactor," Trans. Korean Hydro. New Energy Soc., 23(4), 337-345 (2012). https://doi.org/10.7316/KHNES.2012.23.4.337
  7. Ryu, H. J., Park, Y. C., Jo, S. D., and Park, M. H., "Development of Novel Two-Interconnected Fluidized Bed System," Korean J. Chem. Eng., 25(5), 1178-1183 (2008). https://doi.org/10.1007/s11814-008-0194-z
  8. Ryu, H. J., Park, J., Kim, H. K., and Park, M. H., "Solid Circulation Characteristics in a 3 kW Chemical-looping Combustor," Korean Chem. Eng. Res., 46(6), 1057-1062 (2008).
  9. Ryu, H. J., Jin, G. T., Bae, D. H., and Kim, H. K., "Effects of Operating Variables on Solid Separation rate in Two-interconnectd Fluidized Beds System for Selective Solid Circulation," Korean Chem. Eng. Res., 47(3), 355-361 (2009).
  10. Botterill, J. S. M. and Teoman, Y., "Fluid-Bed Behaviour at Elevated Temperatures," in Int. Fluidization Conf., Edited by Grace, J. R. and Matsen, J. M., Plenum Press, New York, pp. 93-100 (1980).
  11. Botterill, J. S. M., Teoman, Y., and Yuregir, K. R., "The Effect of Operating Temperature on the Velocity of Minimum Fluidization, Bed Voidage and General Behaviour," Powder Technol., 31, 101-110 (1982). https://doi.org/10.1016/0032-5910(82)80009-0
  12. Ergun, S., "Fluid Flow Through Packed Columns," Chem. Eng. Prog., 48, 89-94 (1952).
  13. Wen, C. Y. and Yu, Y. H., "A Generalized Method for Predicting the Minimum Fluidization Velocity," AIChE J., 12, 610-612 (1966). https://doi.org/10.1002/aic.690120343
  14. Ryu, H. J., "Slug Characteristics and Transition Velocity to Turbulent Fluidization in Gas Fluidized Beds," Ph. D. Dissertation, Konkuk University, Seoul, 2000.

Cited by

  1. Comparison of Solid Circulation Characteristics with Change of Lower Loop Seal Geometry in a Circulating Fluidized Bed vol.52, pp.4, 2014, https://doi.org/10.9713/kcer.2014.52.4.522