이미지에 포함되어 있는 텍스트들은 이미지의 내용을 함축적이며 구체적으로 표현하는 정보를 갖고 있다. 본 논문에서는 이러한 정보를 정확히 추출하기 위해서 색 변화 특징을 이용한 텍스트 영역 추출 방법을 제안한다. 관찰에 의하면 이미지 내의 텍스트들은 주변 배경과의 색 변화가 존재하며, 이러한 색 변화를 3차원 RGB공간에서 표현한다면, 명도이미지에서의 밝기 변화에서 표현하기 어려운 영역들을 강조시킬 수 있으며, 조명 변화에도 민감하지 않은 결과를 만들어 낼 수 있다. 색 변화 정도는 3차원 RBG 공간에서의 색 분산(Variance)으로 측정한다 처리 과정으로서 우선 수평 및 수직 방향의 분산 이미지를 구하는데, 텍스트 영역은 두 방향의 분산 값이 모두 높은 특징이 있다. 다음으로 두 결과의 논리적 AND 연산을 수행하여 불필요한 잡영들을 제거한 후 연결요소를 분석, 검증하여 영역을 최종 확정한다. 다양한 종류의 자연이미지로 제안한 방법을 검증한 결과 밝기 변화 또는 색 연속성 특징들을 이용한 방법에서 찾기 어려운 텍스트 영역들을 찾을 수 있는 것을 확인할 수 있었다.
이미지에 포함된 텍스트는 이미지의 내용을 함축적이고 구체적으로 표현하는 정보로서 이러한 정보를 실시간에 찾아내서 인식한다면 다양한 응용에 활용할 수 있다. 본 논문에서는 카메라로 취득한 다양한 종류의 이미지로부터 텍스트를 추출하는 방법과 추출된 영역에서 텍스트를 분리하는 방법을 새롭게 제안한다. 텍스트 영역 추출을 위해서 RGB 색 공간에서 색 분산을 특징으로 제안하며, 텍스트 영역 분리를 위해서 RGB 색 공간에서 개선된 K-means 병합을 제안한다. 실험은 디지털 카메라와 핸드폰 카메라로 취득한 다양한 종류의 문서유형 이미지와 실내외의 일반적인 자연이미지를 사용하였으며, ICDAR 콘테스트[1] 이미지의 일부도 사용하였다.
본 논문은 자연이미지에 포함된 텍스트 영역을 찾기 위한 방법으로서 기존에 제안한 색 분산 특징을 이용한 방법에서 분산이 제대로 추출되지 않는 문자 획들에 대한 복원 방법을 제안한다. 이전의 색 분산 특징을 이용한 추출방법에서는 고정된 크기의 수평 및 수직 분간 추출 윈도우를 사용함으로서 문자 획이 두껍거나 긴 경우에는 색 분산이 제대로 추출되지 않는 단점이 있었다. 따라서 본 논문에서는 미 추출된 색 분산을 연결요소 외곽사각형의 기하학적인 정보와 경험적인(Heuristic) 지식을 함께 이용하여 복원하는 방법을 제안한다. 제안한 방법은 다양한 종류의 디지털 카메라와 휴대폰 카메라를 이용해서 취득한 문서 유형의 이미지와 간판, 거리 표지판 등의 자연이미지를 사용하여 테스트 하였으며, 특히 큰 글자를 포함하는 자연이미지에 대해서도 텍스트 추출의 정확성이 향상된 것을 확인할 수 있었다.
본 논문은 조도, 형태, 배경의 변화에 강인한 다중 비디오카메라에서 색 정보를 이용한 보행자 추적에 대하여 제안한다. 제안된 방법은 비디오카메라로부터 입력되는 영상의 색조만을 이용하여 배경영상과 물체가 존재하는 영상에서 차영상 기법과 가산투영 기법을 사용하여 이동물체를 검출한다. 검출된 이동물체 영역의 색조는 0도부터 360도 사이에서 15도씩 24단계로 분할된다. 검출된 이동물체 영역의 색조 분포도를 구한 후, 가장 높은 분포를 갖는 3개의 색조 레벨과 3개의 색조 레벨 사이의 차를 이동물체의 특징파라미터로 사용하였다. 제안된 방법의 유용성을 증명하기 위하여 조도와 형태의 변화가 발생한 보행자 영상과 조도, 형태, 배경의 변화가 발생한 보행자 영상을 이용하여 보행자를 감시한 결과 카메라에서 검출된 특정사람의 색조 분포 레벨과 색조 레벨 사이의 차는 2레벨 이하로 유지함을 보였고, 제안된 특징 파라미터로 특정사람이 자동 추적감시 됨을 확인하였다.
Smoke detection plays an important role for the early detection of fire. In this paper, we suggest a newly developed method that generated LBPV(Local Binary Pattern Variance)s as special feature vectors from RGB contrast images can be applied to detect smoke using SVM(Support Vector Machine). The proposed method rearranges mean value of the block from each R, G, B channel and its intensity of the mean value. Additionally, it generates RGB contrast image which indicates each RGB channel’s contrast via smoke’s achromatic color. Uniform LBPV, Rotation-Invariance LBPV, Rotation-Invariance Uniform LBPV are applied to RGB Contrast images so that it could generate feature vector from the form of LBP. It helps to distinguish between smoke and non smoke area through SVM. Experimental results show that true positive detection rate is similar but false positive detection rate has been improved, although the proposed method reduced numbers of feature vector in half comparing with the existing method with LBP and LBPV.
본 논문에서는 칼라 특징으로 칼라 오토코렐로그램(autocorrelogram)을 선택하고 질감 특징으로 BDIP(block difference inverse probabilities)와 BVLC(block variance of local correlation coefficient)를 선택하여 이들을 효율적으로 추출하고 결합한 다중 특징기반 영상검색 기법을 제안한다. 칼라 오토코렐로그램은 영상의 H(hue), S(saturation) 칼라 성분으로부터 추출 하였고, BDIP와 BVLC는 V(value) 성분으로부터 추출하였다. 이때 각 특징추출 시 계산량을 고려하여 간소화된 오토코렐로그램과 BVLC를 제안하여 사용하였으며, 추출한 특징들을 효율적으로 저장하기 위해 특징벡터성분들의 값을 그 분포에 따라 균등 또는 비균등 양자화 하여 사용하였다. Corel DB및 VisTex DB에 대한 실험 결과, 칼라 오토코렐로그램과 BDIP, BVLC 질감 특징을 결합함으로써 동일한 차원에서 오토코렐로그램만을 사용할 때보다 최대 9.5%, BDIP, BVLC만을 사용할 때보다 최대 4% 검색성능이 향상되었다. 또한 제안한 다중 특징은 웨이브렛 모멘트, CSD, 칼라 히스토그램에 비해 특징벡터의 저장공간을 약 3분의 1 정도 적게 차지하면서 검색성능이 각각 최대 12.6%, 14.6%, 27.9% 우수하게 나타남을 확인할 수 있었다.
이미지에 인위적 또는 자연적으로 포함된 텍스트는 이미지의 내용을 함축적이고 구체적으로 표현하는 중요한 정의이다. 이러한 정보를 실시간에 추출하여 정확히 인식할 수 있다면 다양한 분야에서 활용될 수 있다. 본 논문에서는 자연이미지에 포함된 장면 텍스트를 추출하는 방법으로서 텍스트의 색 연속성, 자기 변화 및 색 변화와 같은 낮은 수준의 이미지 특징으로 텍스트 후보 영역을 찾고, 다해상도 (Multi-resolution) 웨이블릿(Wavelet) 변환을 이용하여 높은 수준의 텍스트 특징인 획의 구성 여부로 검증하는 계층적인 구조를 제안한다. 색 연속성 특징은 대부분의 텍스트는 동일한 색으로 구성된다는 특징을 이용하는 것이고, 밝기 변화 특징은 텍스트 영역은 주변과의 밝기 변화가 존재하며 에지 밀도가 높은 특징을 이용한다. 또한, 색 변화 특징은 텍스트 영역은 주변 배경과의 색 변화가 존재하며, 밝기 변화보다 민감한 색 분산 값으로 표현할 수 있다는 장점을 이용한다. 높은 수준의 텍스트 특징으로서 다해상도 웨이블릿 변환을 이용하여 텍스트 획의 방향성 정보를 추출하고, 추출된 정보를 SVM(Support Vector Machine) 분류기로 검증하여 최종 영역을 확정한다. 제안한 방법을 다양한 종류의 이미지에 적용한 결과 배경이 복잡해도 비교적 안정적으로 텍스트 영역을 추출하는 것을 확인할 수 있었다.
본 논문에서는 입술 윤곽선을 검출하기 위한 다중 문턱치 기반의 검출방법을 제안하였다. 기존의 연구 중 Spyridonos 등이 제안한 방법은 입력영상을 RGB로부터 YIQ 좌표계로 변환하여 Q 성분만을 이용하여 Q 영상을 얻는다. Q 영상으로부터 변화 점 검출을 통하여 입술 모양의 좌우 끝점을 얻어낸다. 좌우 끝점에 대한 수직 좌표의 평균값을 이용하여 Q 영상을 상하로 분리하고, 상하 영역 각각에 대하여 별도로 Q값을 대상으로 문턱치를 적용하여 후보 윤곽선을 추출한다. 추출된 후보 윤곽선에 특징치 거리를 이용하여 최적의 문턱치를 찾고, 해당하는 윤곽선을 최종 입술 윤곽선으로 결정한다. 이 때 사용되는 특징치 거리 D는 후보 윤곽선 상의 점들을 기준으로 주변 영역에 대한 차이의 절대값을 이용하여 계산한다. 기존연구의 문제점은 세 가지인데, 첫째는 입술 끝점 추출 과정에서 피부영역의 과다한 참여로 입술 끝점의 추출의 정확도가 감소하고, 따라서 후속되는 상/하 영역 분리에도 영향을 미친다. 둘째는 YIQ 칼라 좌표계를 사용하였는데, 다양한 칼라 좌표계에 대한 분석이 미비하므로 추가적인 분석이 필요하다. 세 째, 최적 윤곽선의 선택 시 적용하는 거리 값 파라미터의 계산 과정에서, 문턱치를 적용하여 구한 해당 윤곽선 주변의 데이터들에 의한 변화분을 계산하여 변화가 가장 큰 윤곽선을 입술 후보로 채택하는데, 변화분의 최대치를 기준으로 하기 때문에 검출된 입술영역이 기준보다 축소되는 문제점이 있다. 첫 번째 문제점을 해결하기 위하여 피부영역의 계산과정 참여를 줄여서 성능을 30%정도 향상시켰다. 두 번째는 YIQ 외에 HSV, CIELUV, YCrCb 등의 칼라 좌표계에 대한 성능테스트를 거쳐 기존연구 방법이 칼라좌표계에 대한 의존성이 없음을 확인하였다. 세 번째는 윤곽선 주변의 변화분 검토 시, 윤곽선 포인트 당 변화분의 평균값 대신에 변화분의 총량을 적용하여 46% 성능개선 효과를 얻었다. 이상의 내용을 모두 적용하여 제안한 통합방법은 기존연구 대비 2배의 성능향상과 안정성을 확보할 수 있었다.
A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.
본 논문에서는 색상의 공간적인 상관관계와 질감 모멘트를 이용한 내용기반 영상 검색 기법을 제안한다. 이를 위해, 색상의 공간적인 상관관계를 표현하는 새로운 색상 기술자를 제안하고, 또한 제안된 색상 기술자와 국부적인 푸리에 변환에 기반한 질감 특성을 결합한 영상 검색 방법을 제안한다. 일반적으로 색상의 공간적인 상관관계를 표현하기 위해서 컬러 코렐로그램(color correlogram)이 사용되고 있다. 하지만 컬러 코렐로그램은 중심화소에 따른 이웃한 화소들의 색상 분포를 확률적으로 잘 나타내는 장점이 있지만, 색상의 구조적인 정보를 표현하지 못하는 단점이 있다. 그러므로 본 논문에서는 색상의 분포와 구조적인 정보를 표시할 수 있는 새로운 색상 기술자를 제안한다. 제안하는 새로운 색상 기술자는 중심 화소와 이웃 화소들과의 색상 거리를 계산한 후 최소 거리의 색상과 최대 거리의 색상을 추출한 후 최소-최대 색상 쌍이 이루는 각에 대한 각각의 빈도수를 계산한다. 그런 다음, 각각의 이루는 각에 대해서 최소 거리 색상에 대한 최대 거리 색상들의 평균값과 분산값으로 구성된 새로운 기술자(min-max color correlation descriptor, MMCCD)를 생성한다. 제안한 색상 기술자를 이용하여 검색한 결과는 기존 방법들과 비교했을 경우 정확률에서 최소 5.2%에서 최대 13.21% 향상된 검색 결과를 확인할 수 있었다. 또한, 국부적인 푸리에 변환에 기반한 질감 기술자를 새로운 색상 기술자와 결합하여 특징 벡터의 크기를 절반으로 줄이면서도 새로운 색상 기술자만을 사용할 경우와 비교하여 향상된 검색 결과를 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.