The reflectance observed in the visible channels of a geostationary meteorological satellite can be used to calculate the amount of cloud by comparing the reflectance with the observed solar radiation data at the ground. Using this, the solar radiation arriving at the surface can be estimated. This study used the Meteorological Imager (MI) reflectance observed at a wavelength of 675 nm and the Geostationary Ocean Color Imager (GOCI) reflectance observed at similar wavelengths of 660 and 680 nm. Cloudy days during a typhoon and sunny days with little cloud cover were compared using observation data from the geostationary satellite. Pixels that had more than 40% reflectance in the satellite images showed less than 0.3 of the cloud index and blocked more than 70% of the solar energy. Pixels that showed less than 15% reflectance showed more than 0.9 of the cloud index and let through more than 90% of the solar energy to the surface. The calculated daily accumulated solar radiation was compared with the observed daily accumulated solar radiation in 22 observatories of the Korean Meteorological Administration. The values calculated for the COMS and MTSAT MI sensors were smaller than the observation and showed low correlations of 0.94 and 0.93, respectively, which were smaller than the 0.96 correlation coefficient calculated for the GOCI sensor. The RMSEs of MTSAT, COMS MI and GOCI calculation results showed 2.21, 2.09, 2.02 MJ/$m^2$ in order. Comparison of the calculated daily accumulated results from the GOCI sensor with the observed data on the ground gave correlations and RMSEs for cloudy and sunny days of 0.96 and 0.86, and 1.82 MJ/$m^2$ and 2.27 MJ/$m^2$, respectively, indicating a slightly higher correlation for cloudy days. Compared to the meteorological imager, the geostationary ocean color imager in the COMS satellite has limited observation time and observation is not continuous. However, it has the advantage of providing high resolution so that it too can be useful for solar energy analysis.
Accurate cloud discrimination in satellite images strongly affects accuracy of remotely sensed parameter produced using it. Especially, cloud contaminated pixel over ocean is one of the major error factors such as Sea Surface Temperature (SST), ocean color, and chlorophyll-a retrievals,so accurate cloud detection is essential process and it can lead to understand ocean circulation. However, static threshold method using real-time algorithm such as Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Himawari Imager (AHI) can't fully explained reflectance variability over ocean as a function of relative positions between the sun - sea surface - satellite. In this paper, we assembled a reflectance spectral library as a function of Solar Zenith Angle (SZA) and Viewing Zenith Angle (VZA) from ocean surface reflectance with clear sky condition of Advanced Himawari Imager (AHI) identified by NOAA's cloud products and spectral library is used for applying the Dynamic Time Warping (DTW) to detect cloud pixels. We compared qualitatively between AHI cloud property and our results and it showed that AHI cloud property had general tendency toward overestimation and wrongly detected clear as unknown at high SZA. We validated by visual inspection with coincident imagery and it is generally appropriate.
A graph cuts method has recently attracted a lot of attentions for image segmentation, as it can globally minimize energy functions composed of data term that reflects how each pixel fits into prior information for each class and smoothness term that penalizes discontinuities between neighboring pixels. In previous approaches to graph cuts-based automatic image segmentation, GMM(Gaussian mixture models) is generally used, and means and covariance matrixes calculated by EM algorithm were used as prior information for each cluster. However, it is practicable only for clusters with a hyper-spherical or hyper-ellipsoidal shape, as the cluster was represented based on the covariance matrix centered on the mean. For arbitrary-shaped clusters, this paper proposes graph cuts-based image segmentation using mean shift analysis. As a prior information to estimate the data term, we use the set of mean trajectories toward each mode from initial means randomly selected in $L^*u^*{\upsilon}^*$ color space. Since the mean shift procedure requires many computational times, we transform features in continuous feature space into 3D discrete grid, and use 3D kernel based on the first moment in the grid, which are needed to move the means to modes. In the experiments, we investigate the problems of mean shift-based and normalized cuts-based image segmentation methods that are recently popular methods, and the proposed method showed better performance than previous two methods and graph cuts-based automatic image segmentation using GMM on Berkeley segmentation dataset.
Lim, JoonHoo;Choi, Kwang Ho;Yoo, Won Jae;Kim, La Woo;Lee, Yu Dam;Lee, Hyung Keun
Journal of Advanced Navigation Technology
/
v.21
no.3
/
pp.251-257
/
2017
Recently, hybrid positioning system combining GPS, vision sensor, and inertial sensor has drawn many attentions to estimate accurate vehicle positions. Since accurate multi-sensor fusion requires efficient time synchronization, this paper proposes an efficient method to obtain time synchronized measurements of vision sensor, inertial sensor, and OBD device based on GPS time information. In the proposed method, the time and position information is obtained by the GPS receiver, the attitude information is obtained by the inertial sensor, and the speed information is obtained by the OBD device. The obtained time, position, speed, and attitude information is converted to the color information. The color information is inserted to several corner pixels of the corresponding image frame. An experiment was performed with real measurements to evaluate the feasibility of the proposed method.
Journal of the Korea Society of Computer and Information
/
v.11
no.2
s.40
/
pp.25-33
/
2006
We propose a method that automatically classifies the images into the object and non-object images. An object image is the image with object(s). An object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. We define four measures based on the characteristics of an object to classify the images. The center significance is calculated from the difference in color distribution between the center area and its surrounding region. Second measure is the variance of significantly correlated colors in the image plane. Significantly correlated colors are first defined as the colors of two adjacent pixels that appear more frequently around center of an image rather than at the background of the image. Third one is edge strength at the boundary of candidate for the object. By the way, it is computationally expensive to extract third value because central objects are extracted. So, we define fourth measure which is similar with third measure in characteristic. Fourth one can be calculated more fast but show less accuracy than third one. To classify the images we combine each measure by training the neural network and SYM. We compare classification accuracies of these two classifiers.
Journal of the Korean Association of Geographic Information Studies
/
v.7
no.4
/
pp.143-154
/
2004
The researchers, who seek geological and environmental information, depend on the remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, the adverse weather conditions and the expensive equipment can restrict that the researcher can collect their data anywhere and any time. To allow for better flexibility, we have developed a compact, a multi-spectral automatic Aerial photographic system(PKNU 2). This system's Multi-spectral camera can catch the visible(RGB) and infrared(NIR) bands($3032{\times}2008$ pixels) image. Visible and infrared bands images were obtained from each camera respectively and produced Color-infrared composite images to be analyzed in the purpose of the environment monitor but that was not very good data. Moreover, it has a demerit that the stereoscopic overlap area is not satisfied with 60% due to the 12s storage time of each data, while it was possible that PKNU 2 system photographed photos of great capacity. Therefore, we have been developing the advanced PKNU 2(PKNU 3) that consists of color-infrared spectral camera can photograph the visible and near infrared bands data using one sensor at once, thermal infrared camera, two of 40 G computers to store images, and MPEG board to compress and transfer data to the computer at the real time and can attach and detach itself to a helicopter. Verification and calibration of each sensor(REDLAKE MS 4000, Raytheon IRPro) were conducted before we took the aerial photographs for obtaining more valuable data. Corrections for the spectral characteristics and radial lens distortions of sensor were carried out.
Journal of the Korea Society of Computer and Information
/
v.16
no.7
/
pp.149-156
/
2011
This paper proposes the effective edge selection algorithm for the rapid processing time and low memory usage of efficient graph-based image segmentation on mobile device. The graph-based image segmentation algorithm is to extract objects from a single image. The objects are consisting of graph edges, which are created by information of each image's pixel. The edge of graph is created by the difference of color intensity between the pixel and neighborhood pixels. The object regions are found by connecting the edges, based on color intensity and threshold value. Therefore, the number of edges decides on the processing time and amount of memory usage of graph-based image segmentation. Comparing to personal computer, the mobile device has many limitations such as processor speed and amount of memory. Additionally, the response time of application is an issue of mobile device programming. The image processing on mobile device should offer the reasonable response time, so that, the image segmentation processing on mobile should provide with the rapid processing time and low memory usage. In this paper, we demonstrate the performance of the effective edge selection algorithm, which effectively controls the edges of graph for the rapid processing time and low memory usage of graph-based image segmentation on mobile device.
Characteristics of speckle errors of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll-${\alpha}$ concentration were analyzed, and its causes were investigated by using SeaWiFS data in the East Sea from September 1997 to December 2007. The speckles with anomalously high concentrations were randomly distributed and showed remarkably high bias of greater than $10mg/m^3$, compared with their neighboring pixels. The speckles tended to appear frequently in winter, which might be related to cloud distribution. Ten-year averaged cloudiness of winter was much higher over the southeastern part, with frequent speckles, than the northwestern part of the East Sea. Statistical analysis results showed that the number of the speckles was increased as cloudiness increased. Normalized water-leaving radiance of the speckle pixel was considerably low at the short wavelengths (443, 490, and 510 nm), whereas the radiance at 555 nm band was normal. These low measurements produced extraordinarily high concentration from the chlorophyll-${\alpha}$ estimation formula. This study presented the speckle errors of SeaWiFS chlorophyll-${\alpha}$ concentration in the East Sea and suggested that more reliable chlorophyll-${\alpha}$ data based on appropriate ocean color remote sensing techniques should be used for the oceanic application researches.
Atmospheric correction of Landsat Visible and Near Infrared imagery (VIS/NIR) over aquatic environment is more demanding than over land because the signal from the water column is small and it carries immense information about biogeochemical variables in the ocean. This paper introduces two methods, a modified dark-pixel substraction technique (path--extraction) and our spectral shape matching method (SSMM), for the correction of the atmospheric effects in the Landsat VIS/NIR imagery in relation to the retrieval of meaningful information about the ocean color, especially from Case-2 waters (Morel and Prieur, 1977) around Korean peninsula. The results of these methods are compared with the classical atmospheric correction approaches based on the 6S radiative transfer model and standard SeaWiFS atmospheric algorithm. The atmospheric correction scheme using 6S radiative transfer code assumes a standard atmosphere with constant aerosol loading and a uniform, Lambertian surface, while the path-extraction assumes that the total radiance (L/sub TOA/) of a pixel of the black ocean (referred by Antoine and Morel, 1999) in a given image is considered as the path signal, which remains constant over, at least, the sub scene of Landsat VIS/NIR imagery. The assumption of SSMM is nearly similar, but it extracts the path signal from the L/sub TOA/ by matching-up the in-situ data of water-leaving radiance, for typical clear and turbid waters, and extrapolate it to be the spatially homogeneous contribution of the scattered signal after complex interaction of light with atmospheric aerosols and Raleigh particles, and direct reflection of light on the sea surface. The overall shape and magnitude of radiance or reflectance spectra of the atmospherically corrected Landsat VIS/NIR imagery by SSMM appears to have good agreement with the in-situ spectra collected for clear and turbid waters, while path-extraction over turbid waters though often reproduces in-situ spectra, but yields significant errors for clear waters due to the invalid assumption of zero water-leaving radiance for the black ocean pixels. Because of the standard atmosphere with constant aerosols and models adopted in 6S radiative transfer code, a large error is possible between the retrieved and in-situ spectra. The efficiency of spectral shape matching has also been explored, using SeaWiFS imagery for turbid waters and compared with that of the standard SeaWiFS atmospheric correction algorithm, which falls in highly turbid waters, due to the assumption that values of water-leaving radiance in the two NIR bands are negligible to enable retrieval of aerosol reflectance in the correction of ocean color imagery. Validation suggests that accurate the retrieval of water-leaving radiance is not feasible with the invalid assumption of the classical algorithms, but is feasible with SSMM.
Kim, Wonkook;Lim, Taehong;Ahn, Jae-hyun;Choi, Jong-kuk
Korean Journal of Remote Sensing
/
v.37
no.5_2
/
pp.1269-1279
/
2021
Geostationary Ocean Color Imager II (GOCI-II), which are now operated successfully since its launch in 2020, acquires local area images with 12 Level 1B slot images that are sequentially acquired in a 3×4 grid pattern. The boundary areas between the adjacent slots are prone to discontinuity in radiance, which becomes even more clear in the following Level 2 data, and this warrants the precise analysis and correction before the distribution. This study evaluates the relative radiometric biases between the adjacent slots images, by exploiting the overlapped areas across the images. Although it is ideal to derive the statistics from humongous images, this preliminary analysis uses just the scenes acquired at a specific time to understand its general behavior in terms of bias and variance in radiance. Level 1B images of February 21st, 2021 (UTC03 = noon in local time) were selected for the analysis based on the cloud cover, and the radiance statistics were calculated only with the ocean pixels. The results showed that the relative bias is 0~1% in all bands but Band 1 (380 nm), while Band 1 exhibited a larger bias (1~2%). Except for the Band 1 in slot pairs aligned North-South, biases in all direction and in all bands turned out to have biases in the opposite direction that the sun elevation would have caused.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.