• Title/Summary/Keyword: Color parameter

Search Result 256, Processing Time 0.03 seconds

Comparison of the translucency of shaded zirconia all-ceramic systems

  • Kurtulmus-Yilmaz, Sevcan;Ulusoy, Mutahhar
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.415-422
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate and compare the translucency of shaded zirconia allceramic systems. MATERIALS AND METHODS. Translucency of 3 different zirconia all-ceramic systems colored by different techniques was compared with a lithium disilicate glass-ceramic (IPS e.max Press). Square-shaped specimens with 0.5 mm thickness were fabricated from In-Ceram YZ, ICE Zirkon and Katana systems in A1, A2 and A3.5 shades according to Vitapan Classical shade tab (n=11). Specimens were then veneered and glazed with corresponding veneer ceramic recommended by each zirconia system manufacturer and the total thickness was set to 1.5 mm. Translucency measurements were performed with VITA Easyshade Compact spectrophotometer after each stage and translucency parameter was calculated. Data were statistically analyzed with repeated measures ANOVA and Tukey multiple comparison test. RESULTS. The control group was significantly more translucent than the zirconia systems (P<.05). ICE Zirkon cores showed the least translucency; neither In-Ceram YZ nor Katana systems were superior to each other in terms of translucency. Translucency of all specimens was decreased after veneering, and the translucency rankings were changed. CONCLUSION. Coloring technique did not have a significant effect on translucency of zirconia cores. Although zirconia systems were less translucent than lithium disilicate glass ceramic, they had partial translucency and there were translucency differences among the zirconia systems. Chroma affected the translucency of precolored zirconia cores.

Ion-Beam Induced Changes in the Characteristics of Gd Doped Ceria (이온빔 조사에 따른 Gd-doped Ceria의 특성 변화)

  • Kim, Tae-Hyung;Ryu, Boo-Hyung;Lee, In-Ja
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.401-404
    • /
    • 2010
  • The ion-beam induced changes in the characteristics of gadolinium doped ceria (GDC) pellets have been studied by UV-visible spectroscopy (UV-vis), SEM, and XRD. Implanted ions were protons or Xe ions with the energy of 120 keV or 5 MeV. Densely sintered pristine GDC pellets have cubic fluorite structure and are brown in color. As the ion irradiation proceeded, its color gradually turned into light black and finally into dark black. XRD patterns of GDC pellets were closely related with ion energy and the penetration depth of X-ray. It showed that upon the ion irradiation (120 keV) the lattice parameter of the cubic fluorite phase just beneath the surface is increased.

THE EFFECTS OF CHLORHEXIDINE USING PATTERN WITH PERIODONTAL PACK ON CLINICAL AND MICROBIOLOGIC PARAMETER AFTER PERIODONTAL SURGERY (치주포대에 클로르헥시딘 이용형태가 치주수술후 임상과 미생물학적 변수에 미치는 영향)

  • Lee, Kang-Hyun;Kim, Sung-Ho;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.376-389
    • /
    • 1994
  • A study was conducted to compare the effects of chlorhexidine mouthrinse and chlorhexidine acetate powder with periodontal pack during 4 weeks following periodontal surgery. Twelve patients were treated with Modified Widman flap procedures and devided into three groups of four patients each; control group, chlorhexidine mouthrinse group, chlorhexidine acetate powder group. Each group wasn't significant difference in clinical and microbiologic parameters at preoperation. Examination regarding plaque index, gingival index, pocket depth, change of gingival color postsurgically, pain index were performed by each methods and observed bacteria in gingiva by phase contrast microscope. Evaluations were made at 7, 14 and 28 days postsurgically. The results were as follows: l. In comparison of results revealed no significant differences in Plaque Index, Gingival Index, pocket depth and change of gingival color postsurgically. 2. The pocket depth of three experimental groups were significant reduced at 4 weeks. 3. Chlorhexidine mouthrinse group and chlorhexidine acetate powder group with periodontal pack were significant differences in pain index at 3, 4 days postsurgically. 4. Cocci and Non-motile rods were increased at 1, 2 weeks. But, motile rod and spirochete were increased at 4 weeks.

  • PDF

Drying Ginseng Slices Using a Combination of Microwave and Far-Infrared Drying Techniques

  • Gong, Yuan Juan;Sui, Ying;Han, Chung Su;Ning, Xiao Feng
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.34-42
    • /
    • 2016
  • Purpose: This study was performed to improve the drying quality and drying rate of ginseng slices by combining microwave and far-infrared drying techniques. Methods: Based on single-factor experiments and analyses, a quadratic regression orthogonal rotation combination design was adopted to study the effects of the moisture content at the conversion point between the microwave and far-infrared techniques, the ginseng slice thickness and the far-infrared drying temperature on the chip drying time, the surface color difference value, the nutritional composition and the surface shrinkage rate index. Results: Compared to the far-infrared drying alone, the combined microwave and far-infrared drying resulted in an increase in the saponin content of the ginseng slices and reductions in the drying time, surface color difference, and shrinkage rate. Conclusions: We established a mathematical model of the relationships between the surface shrinkage rate index and the experimental factors using the multi-objective nonlinear optimization method to determine the optimal parameter combination, which was confirmed to be the following: microwave and far-infrared moisture contents of 65%, a ginseng slice thickness of 1 mm, and a far-infrared drying temperature of $54^{\circ}C$.

Improving CMD Areal Density Analysis: Algorithms and Strategies

  • Wilson, R.E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.121-130
    • /
    • 2014
  • Essential ideas, successes, and difficulties of Areal Density Analysis (ADA) for color-magnitude diagrams (CMD's) of resolved stellar populations are examined, with explanation of various algorithms and strategies for optimal performance. A CMD-generation program computes theoretical datasets with simulated observational error and a solution program inverts the problem by the method of Differential Corrections (DC) so as to compute parameter values from observed magnitudes and colors, with standard error estimates and correlation coefficients. ADA promises not only impersonal results, but also significant saving of labor, especially where a given dataset is analyzed with several evolution models. Observational errors and multiple star systems, along with various single star characteristics and phenomena, are modeled directly via the Functional Statistics Algorithm (FSA). Unlike Monte Carlo, FSA is not dependent on a random number generator. Discussions include difficulties and overall requirements, such as need for fast evolutionary computation and realization of goals within machine memory limits. Degradation of results due to influence of pixelization on derivatives, Initial Mass Function (IMF) quantization, IMF steepness, low Areal Densities ($\mathcal{A}$), and large variation in $\mathcal{A}$ are reduced or eliminated through a variety of schemes that are explained sufficiently for general application. The Levenberg-Marquardt and MMS algorithms for improvement of solution convergence are contained within the DC program. An example of convergence, which typically is very good, is shown in tabular form. A number of theoretical and practical solution issues are discussed, as are prospects for further development.

Development of Objective Algorithm for Cloudiness using All-Sky Digital Camera (전천 카메라 영상을 이용한 자동 운량 분석)

  • Kim, Yun Mi;Kim, Jhoon;Cho, Hi Ku
    • Atmosphere
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • The cloud amount, one of the basic parameter in atmospheric observation, have been observed by naked eyes of observers, which is affected by the subjective view. In order to ensure reliable and objective observation, a new algorithm to retrieve cloud amount was constructed using true color images composed of red, green and blue (RGB). The true color image is obtained by the Skyview, an all-sky imager taking pictures of sky, at the Science Building of Yonsei University, Seoul for a year in 2006. The principle of distinguishing clear sky from cloudy sky lies in the fact that the spectral characteristics of light scattering is different for air molecules and cloud. The result of Skyview's algorithm showed about 77% agreement between the observed cloud amount and the calculated, for the error range, the difference between calculated and observed cloudiness, within ${\pm}2$. Seasonally, the best accuracy of about 83% was obtained within ${\pm}2$ range in summer when the cloud amounts are higher, thus better signal-to-noise ratio. Furthermore, as the sky turbidity increased, the error also increased because of increased scattering which can explain the large error in spring. The algorithm still need to be improved in classifying sky condition more systematically with other complimentary instruments to discriminate thin cloud from haze to reduce errors in detecting clouds.

Consumer's Sensory Evaluation and Needs of Interior Fabrics for Seat Cover (시트커버용 인테리어 직물의 감성평가와 소비자 요구도)

  • Kim, Jeong-Hwa;Lee, Sun-Young;Lee, Jung-Soon
    • Korean Journal of Human Ecology
    • /
    • v.18 no.3
    • /
    • pp.749-756
    • /
    • 2009
  • Keeping abreast with the latest consumer's trends, industries are focusing on sensibility aspects of products to meet consumer's needs. The car(?) seat cover fabrics are more closely related to human senses than anything else. This study attempted to investigate which seat cover fabric can give good feeling to consumers and to analyze their characteristics. Twelve kinds of jacquard fabric used for seat cover were selected. The Kawabata Evaluation System was used to measure the mechanical properties of 12 jacquard fabrics, and tactile sensibility(TS), and preference(P) determined by subjective evaluation of 160 participants were also utilized. The stepwise regression analysis was made to select the most significant mechanical properties, and some models for predicting tactile sensibility and preference was developed. The results are briefly summarized as follows: the most important parameter to choose seat cover fabric is a "hygienic property" and the other parameters are 'materials with color fastness', 'compressive property', 'color', 'antibacterial property', 'easy-care property'. The LogSMD, LogB, LC, EM were selected as significant mechanical properties affecting tactile sensibility. Also, the LC, LogB, LogSMD, LogWC, LogMMD were selected as significant mechanical properties affecting preference.

Real-Time Vehicle Detector with Dynamic Segmentation and Rule-based Tracking Reasoning for Complex Traffic Conditions

  • Wu, Bing-Fei;Juang, Jhy-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2355-2373
    • /
    • 2011
  • Vision-based vehicle detector systems are becoming increasingly important in ITS applications. Real-time operation, robustness, precision, accurate estimation of traffic parameters, and ease of setup are important features to be considered in developing such systems. Further, accurate vehicle detection is difficult in varied complex traffic environments. These environments include changes in weather as well as challenging traffic conditions, such as shadow effects and jams. To meet real-time requirements, the proposed system first applies a color background to extract moving objects, which are then tracked by considering their relative distances and directions. To achieve robustness and precision, the color background is regularly updated by the proposed algorithm to overcome luminance variations. This paper also proposes a scheme of feedback compensation to resolve background convergence errors, which occur when vehicles temporarily park on the roadside while the background image is being converged. Next, vehicle occlusion is resolved using the proposed prior split approach and through reasoning for rule-based tracking. This approach can automatically detect straight lanes. Following this step, trajectories are applied to derive traffic parameters; finally, to facilitate easy setup, we propose a means to automate the setting of the system parameters. Experimental results show that the system can operate well under various complex traffic conditions in real time.

Development of a Patient Monitoring System Overall Architecture and Specifications (환자모니터링시스템의 개발 : 전체구조 및 기본사양)

  • 우응제;박승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • We have developed a patient monitoring system including module-based bedside monitors, interbed network, central stations, clinical workstations, and DB servers. A bedside monitor with a color LCD can accommodate up to 3 module cases and 21 different modules. Six different physiological parameters of ECG, respiration, invasive blood pressure, noninvasive blood pressure, body temperature, and arterial pulse oximetry with plethysmoyaph are provided as parameter modules. In a single bedside monitor, modules and a module controller communicate with IMbps data rate through an intrabed network based on RS-485 and HDU protocol. At the same time, it communicates with other bedside monitors and central stations through interbed network based on 1 OMbps Ethernet and TCP/IP protocol. Central stations using 20" color CRT monitors can be connected with many bedside monitors and they display 18 channels of waveforms simultaneously. Clinical workstations are used mainly for the review of patient datE In order to accommodate more advanced data management capabilities such as 24-hour full disclosure, we have developed a relational database server dedicated to the patient monitoring system. Software for bedside monitor, central station, and clinical workstation fully utilizes graphical user interface techniques and all functions are controlled by a rotate/push button on the bedside monitor arid a mouse on the central station and clinical workstation. The entire system satisfies the requirements of AAMI and ANSI standards in terms of electrical safety and performances.nces.

  • PDF

A study of parametric design methodology for 3D modeling parameters of biomorphic clothing sculpture (파라메트릭 디자인 방법론을 적용한 바이오모픽 의상조각 모델링 프로세스와 구성요소 분석)

  • Yoo, Young-Sun;Cho, Min-Jin
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.2
    • /
    • pp.109-122
    • /
    • 2019
  • The purpose of this study is to examine the clothing component information and attributes as the control parameters for the 3D modeling process of the biomorphic clothing sculpture using a parametric methodology. The 3D modeling parameters of biomorphic clothing sculpture were identified as exaggerated silhouette, surface texture, and digital color. The types of exaggerated silhouettes were shoulder and hip exaggeration, shoulder exaggeration, hip exaggeration, vertical exaggeration, and horizontal exaggeration. The types of surface texture were embossed, lacy, furry, and complex textures. The types of digital color were chrome, blur, blend, and acid colors. The characteristics of morphological representation due to the attributes of these control variables were identified as morphological variation, organic morphology, organizational morphology, and realistic morphology. As a result, it was found that the parameter attributes were applied to the biomorphic clothing sculpture parametric design process and developed into various shapes.