• Title/Summary/Keyword: Color features

Search Result 1,192, Processing Time 0.026 seconds

Image Retrieval based on Color-Spatial Features using Quadtree and Texture Information Extracted from Object MBR (Quadtree를 사용한 색상-공간 특징과 객체 MBR의 질감 정보를 이용한 영상 검색)

  • 최창규;류상률;김승호
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.6
    • /
    • pp.692-704
    • /
    • 2002
  • In this paper, we present am image retrieval method based on color-spatial features using quadtree and texture information extracted from object MBRs in an image. Tile proposed method consists of creating a DC image from an original image, changing a color coordinate system, and decomposing regions using quadtree. As such, conditions are present to decompose the DC image, then the system extracts representative colors from each region. And, image segmentation is used to search for object MBRs, including object themselves, object included in the background, or certain background region, then the wavelet coefficients are calculated to provide texture information. Experiments were conducted using the proposed similarity method based on color-spatial and texture features. Our method was able to refute the amount of feature vector storage by about 53%, but was similar to the original image as regards precision and recall. Furthermore, to make up for the deficiency in using only color-spatial features, texture information was added and the results showed images that included objects from the query images.

CNN-ViT Hybrid Aesthetic Evaluation Model Based on Quantification of Cognitive Features in Images (이미지의 인지적 특징 정량화를 통한 CNN-ViT 하이브리드 미학 평가 모델)

  • Soo-Eun Kim;Joon-Shik Lim
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.352-359
    • /
    • 2024
  • This paper proposes a CNN-ViT hybrid model that automatically evaluates the aesthetic quality of images by combining local and global features. In this approach, CNN is used to extract local features such as color and object placement, while ViT is employed to analyze the aesthetic value of the image by reflecting global features. Color composition is derived by extracting the primary colors from the input image, creating a color palette, and then passing it through the CNN. The Rule of Thirds is quantified by calculating how closely objects in the image are positioned near the thirds intersection points. These values provide the model with critical information about the color balance and spatial harmony of the image. The model then analyzes the relationship between these factors to predict scores that align closely with human judgment. Experimental results on the AADB image database show that the proposed model achieved a Spearman's Rank Correlation Coefficient (SRCC) of 0.716, indicating more consistent rank predictions, and a Pearson Correlation Coefficient (LCC) of 0.72, which is 2~4% higher than existing models.

Image Retrieval Using Spacial Color Correlation and Local Texture Characteristics (칼라의 공간적 상관관계 및 국부 질감 특성을 이용한 영상검색)

  • Sung, Joong-Ki;Chun, Young-Deok;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.103-114
    • /
    • 2005
  • This paper presents a content-based image retrieval (CBIR) method using the combination of color and texture features. As a color feature, a color autocorrelogram is chosen which is extracted from the hue and saturation components of a color image. As a texture feature, BDIP(block difference of inverse probabilities) and BVLC(block variation of local correlation coefficients) are chosen which are extracted from the value component. When the features are extracted, the color autocorrelogram and the BVLC are simplified in consideration of their calculation complexity. After the feature extraction, vector components of these features are efficiently quantized in consideration of their storage space. Experiments for Corel and VisTex DBs show that the proposed retrieval method yields 9.5% maximum precision gain over the method using only the color autucorrelogram and 4.0% over the BDIP-BVLC. Also, the proposed method yields 12.6%, 14.6%, and 27.9% maximum precision gains over the methods using wavelet moments, CSD, and color histogram, respectively.

Robust Real-time Face Detection Scheme on Various illumination Conditions (다양한 조명 환경에 강인한 실시간 얼굴확인 기법)

  • Kim, Soo-Hyun;Han, Young-Joon;Cha, Hyung-Tai;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.821-829
    • /
    • 2004
  • A face recognition has been used for verifying and authorizing valid users, but its applications have been restricted according to lighting conditions. In order to minimizing the restricted conditions, this paper proposes a new algorithm of detecting the face from the input image obtained under the irregular lighting condition. First, the proposed algorithm extracts an edge difference image from the input image where a skin color and a face contour are disappeared due to the background color or the lighting direction. In the next step, it extracts a face region using the histogram of the edge difference image and the intensity information. Using the intensity information, the face region is divided into the horizontal regions with feasible facial features. The each of horizontal regions is classified as three groups with the facial features(including eye, nose, and mouth) and the facial features are extracted using empirical properties of the facial features. Only when the facial features satisfy their topological rules, the face region is considered as a face. It has been proved by the experiments that the proposed algorithm can detect faces even when the large portion of face contour is lost due to the inadequate lighting condition or the image background color is similar to the skin color.

An Efficient Image Description Method and Content-based Image Retrieval using Circular Scanning Pattern (회전 주사 패턴을 사용한 효율적인 영상 기술 및 내용 기반 영상 검색)

  • 송호근;강응관
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.1
    • /
    • pp.29-36
    • /
    • 2001
  • This paper proposes an efficient image description method for image retrieval using circular scanning pattern. Therefore, we place the origin of the circular scanning pattern on center point of an image and describe spatial color features of the image using the pattern. The features are Circular Dominant Color, Circular Color Texture, and Circular Color Variation Plot. By the method we can describe color and spatial information of the image at a time, efficiently. Therefore, we can reduce the computational expense and memory usage needed to index the image more than the conventional one does.

  • PDF

Speed Sign Recognition Using Sequential Cascade AdaBoost Classifier with Color Features

  • Kwon, Oh-Seol
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • For future autonomous cars, it is necessary to recognize various surrounding environments such as lanes, traffic lights, and vehicles. This paper presents a method of speed sign recognition from a single image in automatic driving assistance systems. The detection step with the proposed method emphasizes the color attributes in modified YUV color space because speed sign area is affected by color. The proposed method is further improved by extracting the digits from the highlighted circle region. A sequential cascade AdaBoost classifier is then used in the recognition step for real-time processing. Experimental results show the performance of the proposed algorithm is superior to that of conventional algorithms for various speed signs and real-world conditions.

A New Covert Visual Attention System by Object-based Spatiotemporal Cues and Their Dynamic Fusioned Saliency Map (객체기반의 시공간 단서와 이들의 동적결합 된돌출맵에 의한 상향식 인공시각주의 시스템)

  • Cheoi, Kyungjoo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.460-472
    • /
    • 2015
  • Most of previous visual attention system finds attention regions based on saliency map which is combined by multiple extracted features. The differences of these systems are in the methods of feature extraction and combination. This paper presents a new system which has an improvement in feature extraction method of color and motion, and in weight decision method of spatial and temporal features. Our system dynamically extracts one color which has the strongest response among two opponent colors, and detects the moving objects not moving pixels. As a combination method of spatial and temporal feature, the proposed system sets the weight dynamically by each features' relative activities. Comparative results show that our suggested feature extraction and integration method improved the detection rate of attention region.

An Efficient Video Retrieval Algorithm Using Color and Edge Features

  • Kim Sang-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • To manipulate large video databases, effective video indexing and retrieval are required. A large number of video indexing and retrieval algorithms have been presented for frame-w]so user query or video content query whereas a relatively few video sequence matching algorithms have been proposed for video sequence query. In this paper, we propose an efficient algorithm to extract key frames using color histograms and to match the video sequences using edge features. To effectively match video sequences with low computational load, we make use of the key frames extracted by the cumulative measure and the distance between key frames, and compare two sets of key frames using the modified Hausdorff distance. Experimental results with several real sequences show that the proposed video retrieval algorithm using color and edge features yields the higher accuracy and performance than conventional methods such as histogram difference, Euclidean metric, Battachaya distance, and directed divergence methods.

  • PDF

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

Color Laser Printer Forensics through Wiener Filter and Gray Level Co-occurrence Matrix (위너 필터와 명암도 동시발생 행렬을 통한 컬러 레이저프린터 포렌식 기술)

  • Lee, Hae-Yeoun;Baek, Ji-Yeoun;Kong, Seung-Gyu;Lee, Heung-Su;Choi, Jung-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.8
    • /
    • pp.599-610
    • /
    • 2010
  • Color laser printers are nowadays abused to print or forge official documents and bills. Identifying color laser printers will be a step for media forensics. This paper presents a new method to identify color laser printers with printed color images. Since different printer companies use their own printing process, each of printed papers from different printers has a little different invisible noise. After the wiener-filter is used to analyze the invisible noises from each printer, we extract some features from these noises by calculating a gray level co-occurrence matrix. Then, these features are applied to train and classify the support vector machine for identifying the color laser printer. In the experiment, we use total 2,597 images from 7 color laser printers. The results prove that the presented identification method performs well using the noise features of color printed images.