• Title/Summary/Keyword: Color difference signal

Search Result 48, Processing Time 0.032 seconds

Implementation of Multiview Calibration System for An Effective 3D Display (효과적인 3차원 디스플레이를 위한 다시점 영상왜곡 보정처리 시스템 구현)

  • Bae Kyung-Hoon;Park Jae-Sung;Yi Dong-Sik;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.36-45
    • /
    • 2006
  • In this paper, multiview calibration system for an effective 3D display is proposed. This system can be obtain 4-view image from multiview camera system. Also it can be rectify lens and camera distortion, error of bright and color, and it can be calibrate distortion of geometry. In this paper, we proposed the signal processing skill to calibrate the camera distortions which are able to take place from the acquisited multiview images. The discordance of the brightness and the colors are calibrated the color transform by extracting the feature point, correspondence point. And the difference of brightness is calibrated by using the differential map of brightness from each camera image. A spherical lens distortion is corrected by extracting the pattern of the multiview camera images. Finally the camera error and size among the multiview cameras is calibrated by removing the distortion. Accordingly, this proposed rectification & calibration system enable to effective 3D display and acquire natural multiview 3D image.

Realization of 3D Virtual Face Using two Sheets of 2D photographs (두 장의 2D 사진을 이용한 3D 가상 얼굴의 구현)

  • 임낙현;서경호;김태효
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.16-21
    • /
    • 2001
  • In this paper a virtual form of 3 dimensional face is synthesized from the two sheets of 2 dimensional photographs In this case two sheets of 2D face photographs, the front and the side photographs are used First of all a standard model for a general face is created and from this model the feature points which represents a construction of face are densely defined on part of ears. eyes, a nose and a lip but the other parts. for example, forehead, chin and hair are roughly determined because of flat region or the less individual points. Thereafter the side photograph is connected symmetrically on the left and right sides of the front image and it is gradually synthesized by use of affine transformation method. In order to remove the difference of color and brightness from the junction part, a linear interpolation method is used. As a result it is confirmed that the proposed model which general model of a face can be obtain the 3D virtual image of the individual face.

  • PDF

Implementation of compact TV-out video processor for portable digital device (휴대디지털 기기를 위한 소형화된 TV-out 비디오 프로세서의 구현)

  • Lee, Sung-Mok;Jang, Won-Woo;Ha, Joo-Young;Kim, Joo-Hyun;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.207-213
    • /
    • 2006
  • This paper presents the design and implementation of a video processor for the device of need TV-OUT function. The designed video processor satisfies the standard conditions of ITU-R(International Telecommunication Union-Radiocommunication) BT.470. Also, in order to apply various digital device, we concentrate upon hardware complexity. ITU-R BT.470 can be classified as NTSC, PAL or SECAM. NTSC and PAL use QAM(Quardarature Amplitude Modulation) to transmit color difference signals and SECAM uses FM(Frequency Modulation). FM must have antic-cloche filter but filter recommended by ITU-R BT.470 is not easy to design due to sharpness of the frequency response. So this paper proposes that the special quality of anti-cloche filter is transformed easy to design and the modulation method is modified to be identical with the result required at standard. The processor can control power consumption by output mode to apply portable digital devices. The proposed processor is experimentally demonstrated with ALTERA FPGA APEX20KE EP20K1000EBC652-3 device and SAMSUNG LCD-TV.

  • PDF

Zoom Motion Estimation Method by Using Depth Information (깊이 정보를 이용한 줌 움직임 추정 방법)

  • Kwon, Soon-Kak;Park, Yoo-Hyun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • Zoom motion estimation of video sequence is very complicated for implementation. In this paper, we propose a method to implement the zoom motion estimation using together the depth camera and color camera. Depth camera obtains the distance information between current block and reference block, then zoom ratio between both blocks is calculated from this distance information. As the reference block is appropriately zoomed by the zoom ratio, the motion estimated difference signal can be reduced. Therefore, the proposed method is possible to increase the accuracy of motion estimation with keeping zoom motion estimation complexity not greater. Simulation was to measure the motion estimation accuracy of the proposed method, we can see the motion estimation error was decreased significantly compared to conventional block matching method.

In Situ Sensing of Copper-plating Thickness Using OPD-regulated Optical Fourier-domain Reflectometry

  • Nayoung, Kim;Do Won, Kim;Nam Su, Park;Gyeong Hun, Kim;Yang Do, Kim;Chang-Seok, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Optical Fourier-domain reflectometry (OFDR) sensors have been widely used to measure distances with high resolution and speed in a noncontact state. In the electroplating process of a printed circuit board, it is critically important to monitor the copper-plating thickness, as small deviations can lead to defects, such as an open or short circuit. In this paper we employ a phase-based OFDR sensor for in situ relative distance sensing of a sample with nanometer-scale resolution, during electroplating. We also develop an optical-path difference (OPD)-regulated sensing probe that can maintain a preset distance from the sample. This function can markedly facilitate practical measurements in two aspects: Optimal distance setting for high signal-to-noise ratio OFDR sensing, and protection of a fragile probe tip via vertical evasion movement. In a sample with a centimeter-scale structure, a conventional OFDR sensor will probably either bump into the sample or practically out of the detection range of the sensing probe. To address this limitation, a novel OPD-regulated OFDR system is designed by combining the OFDR sensing probe and linear piezo motors with feedback-loop control. By using multiple OFDR sensors, it is possible to effectively monitor copper-plating thickness in situ and uniformize it at various positions.

Scattering characteristics of metal and dielectric optical nano-antennas

  • Ee, Ho-Seok;Lee, Eun-Khwang;Song, Jung-Hwan;Kim, Jinhyung;Seo, Min-Kyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.76.1-76.1
    • /
    • 2015
  • Optical resonances of metallic or dielectric nanoantennas enable to effectively convert free-propagating electromagnetic waves to localized electromagnetic fields and vice versa. Plasmonic resonances of metal nanoantennas extremely modify the local density of optical states beyond the optical diffraction limit and thus facilitate highly-efficient light-emitting, nonlinear signal conversion, photovoltaics, and optical trapping. The leaky-mode resonances, or termed Mie resonances, allow dielectric nanoantennas to have a compact size even less than the wavelength scale. The dielectric nanoantennas exhibiting low optical losses and supporting both electric and magnetic resonances provide an alternative to their metallic counterparts. To extend the utility of metal and dielectric nanoantennas in further applications, e.g. metasurfaces and metamaterials, it is required to understand and engineer their scattering characteristics. At first, we characterize resonant plasmonic antenna radiations of a single-crystalline Ag nanowire over a wide spectral range from visible to near infrared regions. Dark-field optical microscope and direct far-field scanning measurements successfully identify the FP resonances and mode matching conditions of the antenna radiation, and reveal the mutual relation between the SPP dispersion and the far-field antenna radiation. Secondly, we perform a systematical study on resonant scattering properties of high-refractive-index dielectric nanoantennas. In this research, we examined Si nanoblock and electron-beam induced deposition (EBID) carbonaceous nanorod structures. Scattering spectra of the transverse-electric (TE) and transverse-magnetic (TM) leaky-mode resonances are measured by dark-field microscope spectroscopy. The leaky-mode resonances result a large scattering cross section approaching the theoretical single-channel scattering limit, and their wide tuning ranges enable vivid structural color generation over the full visible spectrum range from blue to green, yellow, and red. In particular, the lowest-order TM01 mode overcomes the diffraction limit. The finite-difference time-domain method and modal dispersion model successfully reproduce the experimental results.

  • PDF

Motion Estimation Method by Using Depth Camera (깊이 카메라를 이용한 움직임 추정 방법)

  • Kwon, Soon-Kak;Kim, Seong-Woo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.676-683
    • /
    • 2012
  • Motion estimation in video coding greatly affects implementation complexity. In this paper, a reducing method of the complexity in motion estimation is proposed by using both the depth and color cameras. We obtain object information with video sequence from distance information calculated by depth camera, then perform labeling for grouping pixels within similar distances as the same object. Three search regions (background, inside-object, boundary) are determined adaptively for each of motion estimation blocks within current and reference pictures. If a current block is the inside-object region, then motion is searched within the inside-object region of reference picture. Also if a current block is the background region, then motion is searched within the background region of reference picture. From simulation results, we can see that the proposed method compared to the full search method remains the almost same as the motion estimated difference signal and significantly reduces the searching complexity.

Flame and Smoke Detection for Early Fire Recognition (조기 화재인식을 위한 화염 및 연기 검출)

  • Park, Jang-Sik;Kim, Hyun-Tae;Choi, Soo-Young;Kang, Chang-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.427-430
    • /
    • 2007
  • Many victims and property damages are caused in fires every year. In this paper, flame and smoke detection algorithm by using image processing technique is proposed to early alarm fires. The first decision of proposed algorithms is to check candidate of flame region with its unique color distribution distinguished from artificial lights. If it is not a flame region then we can check to candidate of smoke region by measuring difference of brightness and chroma at present frame. If we just check flame and smoke with only simple brightness and hue, we will occasionally get false alarms. Therefore we also use motion information about candidate of flame and smoke regions. Finally, to determine the flame after motion detection, activity information is used. And in order to determine the smoke, edges detection method is adopted. As a result of simulation with real CCTV video signal, it is shown that the proposed algorithm is useful for early fire recognition.

  • PDF

Gamut Mapping and Extension Method in the xy Chromaticity Diagram for Various Display Devices (다양한 디스플레이 장치를 위한 xy 색도도상에서의 색역 사상 및 확장 기법)

  • Cho Yang-Ho;Kwon Oh-Seol;Son Chang-Hwan;Park Tae-Yong;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.1 s.307
    • /
    • pp.45-54
    • /
    • 2006
  • This paper proposed color matching technique, including display characterization, chromatic adaptation model, and gamut mapping and extension, to generate consistent colors for the same input signal in each display device. It is necessary to characterize the relationship between input and output colors for display device, to apply chromatic adaptation model considering the difference of reference white, and to compensate for the gamut which display devices can represent for reproducing consistent colors on DTV display devices. In this paper, 9 channel-independent GOG model, which is improved from conventional 3 channel GOG(gain, offset gamma) model, is used to consider channel interaction and enhance the modeling accuracy. Then, the input images have to be adjusted to compensate for the limited gamut of each display device. We proposed the gamut mapping and extension method, preserving lightness and hue of an original image and enhancing the saturation of an original image in xy chromaticity diagram. Since the hmm visual system is more sensitive to lightness and hue, these values are maintained as the values of input signal, and the enhancement of saturation is changed to the ratio of input and output gamut. Also the xy chromaticity diagram is effective to reduce the complexity of establishing gamut boundary and the process of reproducing moving-pictures in DTV display devices. As a result, reproducing accurate colors can be implemented when the proposed method is applied to LCD and PDP display devices

Evaluation of Magnetization Transfer Ratio Imaging by Phase Sensitive Method in Knee Joint (슬관절 부위에서 자화전이 위상감도법에 의한 자화전이율 영상 평가)

  • Yoon, Moon-Hyun;Seung, Mi-Sook;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.269-275
    • /
    • 2008
  • Although MR imaging is generally applicable to depict knee joint deterioration it, is sometimes occurred to mis-read and mis-diagnose the common knee joint diseases. In this study, we employed magnetization transfer ratio (MTR) method to improve the diagnosis of the various knee joint diseases. Spin-echo (SE) T2-weighted images (TR/TE 3,400-3,500/90-100 ms) were obtained in seven cases of knee joint deterioration, FSE T2-weighted images (TR/TE 4,500-5,000/100-108 ms) were obtained in seven cases of knee joint deterioration, gradient-echo (GRE) T2-weighted images (TR/TE 9/4.56/$50^{\circ}$ flip angle, NEX 1) were obtained in 3 cases of knee joint deterioration, In six cases of knee joint deterioration, fat suppression was performed using a T2-weighted short T1/tau inverse recovery (STIR) sequence (TR/TE =2,894-3,215 ms/70 ms, NEX 3, ETL 9). Calculation of MTR for individual pixels was performed on registration of unsaturated and saturated images. After processing to make MTR images, the images were displayed in gray color. For improving diagnosis, three-dimensional isotropic volume images, the MR tristimulus color mapping and the MTR map was employed. MTR images showed diagnostic images quality to assess the patients' pathologies. The intensity difference between MTR images and conventional MRI was seen on the color bar. The profile graph on MTR imaging effect showed a quantitative measure of the relative decrease in signal intensity due to the MT pulse. To diagnose the pathologies of the knee joint, the profile graph data was shown on the image as a small cross. The present study indicated that MTR images in the knee joint were feasible. Investigation of physical change on MTR imaging enables to provide us more insight in the physical and technical basis of MTR imaging. MTR images could be useful for rapid assessment of diseases that we examine unambiguous contrast in MT images of knee disorder patients.

  • PDF