• Title/Summary/Keyword: Color chromaticity

Search Result 373, Processing Time 0.024 seconds

Estimation of Illuminant Chromaticity by Analysis of Human Skin Color Distribution (피부색 칼라 분포 특성을 이용한 조명 색도 검출)

  • JeongYeop Kim
    • Journal of Platform Technology
    • /
    • v.11 no.5
    • /
    • pp.59-71
    • /
    • 2023
  • This paper proposes a method of estimating the illumination chromaticity of a scene in which an image is taken. Storring and Bianco proposed a method of estimating illuminant chromaticity using skin color. Storring et al. used skin color distribution characteristics and black body locus, but there is a problem that the link between the locus and CIE-xy data is reduced. Bianco et al. estimated the illuminant chromaticity by comparing the skin color distribution in standard lighting with the skin color distribution in the input image. This method is difficult to measure and secure as much skin color as possible in various illumination. The proposed method can estimate the illuminant chromaticity for any input image by analyzing the relationship between the skin color information and the illuminant chromaticity. The estimation method is divided into an analysis stage and a test stage, and the data set was classified into an analysis group and a test group and used. Skin chromaticity is calculated by obtaining skin color areas from all input images of the analysis group, respectively. A mapping is obtained by analyzing the correlation between the average set of skin chromaticity and the reference illuminant chromaticity set. The calculated mapping is applied to all input images of the analysis group to estimate the illuminant chromaticity, calculate the error with the reference illuminant chromaticity, and repeat the above process until there is no change in the error to obtain a stable mapping. The obtained mapping is applied to the test group images similar to the analysis stage to estimate the illuminant chromaticity. Since there is no independent data set containing skin area and illuminant reference information, the experimental data set was made using some of the images of the Intel TAU data set. Compared to Finlayson, a similar theory-based existing method, it showed performance improvement of more than 40%, Zhang 11%, and Kim 16%.

  • PDF

Dispatching Rule based on Chromaticity and Color Sequence Priorities for the Gravure Printing Operation (색도 및 색순에 따른 그라비아 인쇄 공정의 작업 순서 결정 규칙)

  • Bae, Jae-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.10-20
    • /
    • 2020
  • This paper presents a method to measure the similarity of assigned jobs in the gravure printing operation based on the chromaticity and color sequence, and order the jobs accordingly. The proposed dispatching rule can be used to fulfill diverse manufacturing site requirements because the parameters can be adjusted to prioritize chromaticity and color sequence. In general, dispatching rules either ignore the job-changing time or require that the time be clearly defined. However, in the gravure printing operation targeted in this study, it is difficult to apply the general dispatching rule because of the difficulties in quantifying the job-changing time. Therefore, we propose a method for generalizing assignment rules of the job planner, allocating relative similarity among assigned jobs, and determining the sequence of jobs accordingly. Chromaticity priority is determined by the arrangement of the color assignments in the printing operation; color sequence priority is determined by the addition, deletion, or change in a specific color sequence. Finally, the job similarity is determined by the dot product of the chromaticity and color sequence priorities. Implementation of the proposed dispatching rule at an actual manufacturing site showed the planner present the same job order as that obtained using the proposed rule. Therefore, this rule is expected to be useful in industrial sites where clear quantification of the job-changing time is not possible.

Development of a Portable Colorimeter (소형 칼라미터의 개발에 관한 연구)

  • 김재형;황정연;서대식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.328-331
    • /
    • 2001
  • Color simulation on a portable colorimeter was performed to distinguish quantitatively a chromaticity coordinates on a color guide of a urine strips by using the spectral power distribution of chip LED, the spectral reflectance of printed objects, and the spectral sensitivity of photodiode. The CIE tristimulus values and chromaticity coordinates realized by a colorimeter were modified to be conformable with real color reactions. Experimental results showed a real color in comparison with those obtained by Colorimeter CM2C(Color Savvy).

  • PDF

Color Correction Using Chromaticity of Highlight Region in Multi-Scaled Retinex

  • Jang, In-Su;Park, Kee-Hyon;Ha, Yeong-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.59-62
    • /
    • 2009
  • In general, as a dynamic range of digital still camera is narrower than a real scene‘s, it is hard to represent the shadow region of scene. Thus, multi-scaled retinex algorithm is used to improve detail and local contrast of the shadow region in an image by dividing the image by its local average images through Gaussian filtering. However, if the chromatic distribution of the original image is not uniform and dominated by a certain chromaticity, the chromaticity of the local average image depends on the dominant chromaticity of original image, thereby the colors of the resulting image are shifted to a complement color to the dominant chromaticity. In this paper, a modified multi-scaled retinex method to reduce the influence of the dominant chromaticity is proposed. In multi-scaled retinex process, the local average images obtained by Gaussian filtering are divided by the average chromaticity values of the original image in order to reduce the influence of dominant chromaticity. Next, the chromaticity of illuminant is estimated in highlight region and the local average images are corrected by the estimated chromaticity of illuminant. In experiment, results show that the proposed method improved the local contrast and detail without color distortion.

  • PDF

Digital Light Color Control System of LED Lamp using Inverse Tri-Stimulus Algorithm (역 삼자극치 알고리즘을 이용한 LED램프 디지털 광색제어시스템)

  • Kang, Shin-Ho;Lee, Jeong-Min;Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, the method to calculate chromaticity coordinate from spectral power distribution of LED is presented. Also, inverse tri-stimulus algorithm to find mixed luminance of red, green, blue LED from targeted luminance and chromaticity coordinate is proposed. Besides, digital light color control system of LED lamp applied this algorithm has been developed. In experiments, each chromaticity coordinate of red, green, blue LED calculated from this algorithm has relative percentage error of few % to measured values. Digital code is drawn from inverse tri-stimulus algorithm, and measured values of luminance and chromaticity coordinate of LED lamp digitally controlled by this code also have relative percentage error within a few % to targeted luminance and chromaticity coordinate.

Transformation of Illuminant Chromaticity for Arbitrary Color Temperature (임의 색온도에 대한 조명 색 변환기법)

  • Kim Jeong-Yeop;Kim Sang-Hyun;Hyun Ki-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.10
    • /
    • pp.1370-1377
    • /
    • 2004
  • The still image and video of the same scene taken under various condition show different color, and the most important factor of capture condition is scene illuminant. The average color of contents is determined along the color temperature of scene illuminant, the method for conversion of scene illuminant chromaticity is needed. In this paper, the method for converting the scene illuminant chromaticity from arbitrary correlated color temperature to another arbitrary one is proposed. Conventional method only defines several set of color temperature conversion that can be evaluated as representative ones. The proposed method has the merit of calculating the conversion function directly from arbitrary color temperature to another one.

  • PDF

Reduction of Color Distortion by Estimating Dominant Chromaticity in Multi-Scaled Retinex (다중 Retinex 알고리즘에서 주색도 추정을 이용한 색상 왜곡 보정)

  • Jang, In-Su;Park, Kee-Hyon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.52-59
    • /
    • 2009
  • In general, methods based on histogram or a correction of gamma curve are usually utilized to enhance the contrast of captured image in the dark scene. These methods are efficient to enhance the contrast globally, however, they locally induced the low quality of image. Recently, to resolve the problem, the multi-scaled refiner algorithm improving the contrast with locally averaged lightness is proposed. However, estimating the locally averaged lightness, if there is the object with a high saturated color, the color distortion might be induced by the color of object. Thus, in this paper, the dominant chromaticity of image is estimated to correct the locally averaged lightness in multi-scaled retinex algorithm. Because the average chromaticity of image includes the chromaticity of illumination, the dominant chromaticity is estimated with dividing the average chromaticity of image by the estimated chromaticity of illumination from highlight region. In addition, to improve the lower chroma by multi-scaled retinex algorithm generally, the chroma was compensated preserving the hue in the CIELAB color space.

Illumination Chromaticity Estimation in Single and Multiple Colored Image using Dichromatic Line Space (단일 및 다중 컬러 영상에서 이색성 선 공간을 이용한 조명 색도 추정)

  • Choi Yoo Jin;Yoon Kuk-Jin;Kweon In So
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.1
    • /
    • pp.84-94
    • /
    • 2006
  • The color information in an image changes as the illuminant condition varies. The mechanism to find canonical color of an object by estimating illumination color in an image is generally referred as color constancy. In color constancy, computing robust and precise dichromatic line is most important to estimate illumination chromaticity. In this paper, a novel approach to estimate the color of a single illuminant for noisy and micro-textured images is introduced. An accurate dichromatic line is found by using Dichromatic Line Space (DLS), proposed in this paper. which has information about diffuse chromaticity and illumination chromaticity.

Effects of Current Modulation Conditions on the Chromaticity of Phosphor Converted (PC) White LEDs

  • Kim, Seungtaek;Kim, Jongseok;Kim, Hyungtae;Kim, Yong-Kweon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.449-456
    • /
    • 2012
  • For two well-known modulation methods, stepwise current modulation (SCM) and pulse width modulation (PWM), the effects of driving current modulation conditions on chromaticity were experimentally investigated in a white LED lighting system. For the experimental implementation of both SCM and PWM, a white LED lighting was fabricated using phosphor converted (PC) white light emitting diodes (LEDs) and a driving circuit module was developed. By using them, the variations of illuminance, color coordinates, and spectrum were evaluated under various forward current conditions. Through the analysis in color coordinates, yellow shift in SCM and blue shift in PWM were observed on chromaticity diagrams with increasing average driving current. In addition, in order to analyze color deviation quantitatively, color distance before and after current increase, and the correlated color temperature (CCT) were calculated. As a result, for the white LED lighting in both modulation conditions, the maximum difference in the calculated CCT was obtained close to 1000 K. It means that careful consideration is required to be taken in the design of illumination systems to avoid serious problems such industrial accidents.