• Title/Summary/Keyword: Color Sensing

Search Result 414, Processing Time 0.028 seconds

Analysis on optical property in the South Sea of Korea by using Satellite Image : Study of Case on red tide occurrence in August 2013 (위성영상을 활용한 한국 남해의 광학적 특성 연구 : 2013년 8월 발생한 적조 사례를 중심으로)

  • Bak, Su-Ho;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.723-728
    • /
    • 2016
  • This study is analyzed the optical property of red tide pixel by using Landsat-7 ETM+, Landsat-8 OLI and COMS/GOCI image. In order to sample red tide pixel, Landsat-7, 8 true color image were used and obtained coordinate of red tide pixel in the true color image. Normalized water leaving radiance(nLw) and absorption coefficient were obtained from GOCI image in the same coordinate of the true color image. When red tide was not occurred the main absorption range was 412nm and 660nm but when red tide occurred it was 660nm and absorption coefficient in 412nm are drastically reduced. It made no difference of nLw spectrum between red tide pixel and non red tide pixel in nLw, but the absolute value of nLw was low than non red tide pixel, especially 660nm and 680nm wavelength sharply decrease.

Non-imaging Optical Design of a Measurement Probe for LCD Display Used in a Color Analyzer (LCD 디스플레이용 색채계 렌즈에 관한 비결상 광학설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.239-244
    • /
    • 2011
  • We introduce Gaussian (or paraxial) optics that can be successfully applied to design, for use in a color analyzer, a non-imaging optical system on a measurement probe for LCD display. The color analyzer is used to decompose colored lights leaving from some measurement area on the LCD display to red, green, and blue. The color analyzer must include a condenser lens whose purpose is to gather colored lights to illuminate a small area on the sensor. In order to satisfy a reduction ratio between the measurement area and the sensing area with a non-imaging condition, a condenser lens is analytically treated by means of Gaussian optics so that good understanding of the non-imaging condenser lens is achieved as a good design is derived. As a result, the technique shows the necessity of analytical treatment in contrast to the design approach using only commercial software such as CODE-V, Light-Tools, and others. Of course, CODE V and Light-Tools are also utilized in this paper to confirm and complete the Gaussian optical design.

The GOCI-II Early Mission Ocean Color Products in Comparison with the GOCI Toward the Continuity of Chollian Multi-satellite Ocean Color Data (천리안해양위성 연속자료 구축을 위한 GOCI-II 임무 초기 주요 해색산출물의 GOCI 자료와 비교 분석)

  • Park, Myung-Sook;Jung, Hahn Chul;Lee, Seonju;Ahn, Jae-Hyun;Bae, Sujung;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1281-1293
    • /
    • 2021
  • The recent launch of the GOCI-II enables South Korea to have the world's first capability in deriving the ocean color data at geostationary satellite orbit for about 20 years. It is necessary to develop a consistent long-term ocean color time-series spanning GOCI to GOCI-II mission and improve the accuracy through validation using in situ data. To assess the GOCI-II's early mission performance, the objective of this study is to compare the GOCI-II Chlorophyll-a concentration (Chl-a), Colored Dissolved Organic Matter (CDOM), and remote sensing reflectances (Rrs) through comparison with the GOCI data. Overall, the distribution of GOCI-II Chl-a corresponds with that of the GOCI over the Yellow Sea, Korea Strait, and the Ulleung Basin. In particular, a smaller RMSE value (0.07) between GOCI and GOCI-II over the summer Ulleung Basin confirms the GOCI-II data's reliability. However, despite the excellent correlation, the GOCI-II tends to overestimate Chl-a than the GOCI over the Yellow Sea and Korea Strait. The similar over-estimation bias of the GOCI-II is also notable in CDOM. Whereas no significant bias or error is found for Rrs at 490 nm and 550 nm (RMSE~0), the underestimation of Rrs at 443 nm contributes to the overestimation of GOCI-II Chl-a and CDOM over the Yellow Sea and the Korea Strait. Also, we show over-estimation of GOCI-II Rrs at 660 nm relative to GOCI to cause a possible bias in Total suspended sediment. In conclusion, this study confirms the initial reliability of the GOCI-II ocean color products, and upcoming update of GOCI-II radiometric calibration will lessen the inconsistency between GOCI and GOCI-II ocean color products.

An Efficient Data Processing Method to Improve the Geostationary Ocean Color Imager (GOCI) Data Service (천리안 해양관측위성의 배포서비스 향상을 위한 자료 처리 효율화 방안 연구)

  • Yang, Hyun;Oh, Eunsong;Han, Tai-Hyun;Han, Hee-Jeong;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • We proposed and verified the methods to maintain data qualities as well as to reduce data volume for the Geostationary Ocean Color Imager (GOCI), the world's first ocean color sensor operated in geostationary orbit. For the GOCI level-2 data, 92.9% of data volume could be saved by only the data compression. For the GOCI level-1 data, however, just 20.7% of data volume could be saved by the data compression therefore another approach was required. First, we found the optimized number of bits per a pixel for the GOCI level-1 data from an idea that the quantization bit for the GOCI (i.e. 12 bit) was less than the number of bits per a pixel for the GOCI level-1 data (i.e. 32 bit). Experiments were conducted using the $R^2$ and the Modulation Transfer Function (MTF). It was quantitatively revealed that the data qualities were maintained although the number of bits per a pixel was reduced to 14. Also, we performed network simulations using the Network Simulator 2 (Ns2). The result showed that 57.7% of the end-toend delay for a GOCI level-1 data was saved when the number of bits per a pixel was reduced to 14 and 92.5% of the end-to-end delay for a GOCI level-2 data was saved when 92.9% of the data size was reduced due to the compression.

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

A Study on the Detection and Statistical Feature Analysis of Red Tide Area in South Coast Using Remote Sensing (원격탐사를 이용한 남해안의 적조영역 검출과 통계적 특징 분석에 관한 연구)

  • Sur, Hyung-Soo;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.65-70
    • /
    • 2007
  • Red tide is becoming hot issue of environmental problem worldwide since the 1990. Advanced nations, are progressing study that detect red tide area on early time using satellite for sea. But, our country most seashores bends serious. Also because there are a lot of turbid method streams on coast, hard to detect small red tide area by satellite for sea that is low resolution. Also, method by sea color that use one feature of satellite image for sea of existent red tide area detection was most. In this way, have a few feature in image with sea color and it can cause false negative mistake that detect red tide area. Therefore, in this paper, acquired texture information to use GLCM(Gray Level Co occurrence Matrix)'s texture 6 information about high definition land satellite south Coast image. Removed needless component reducing dimension through principal component analysis from this information. And changed into 2 principal component accumulation images, Experiment result 2 principal component conversion accumulation image's eigenvalues were 94.6%. When component with red tide area that uses only sea color image and all principal component image. displayed more correct result. And divided as quantitative,, it compares with turbid stream and the sea that red tide does not exist using statistical feature analysis about texture.

Introduction of Acquisition System, Processing System and Distributing Service for Geostationary Ocean Color Imager (GOCI) Data (정지궤도 해색탑재체(GOCI) 데이터의 수신.처리 시스템과 배포 서비스)

  • Yang, Chan-Su;Bae, Sang-Soo;Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Han, Tai-Hyun;Yoo, Hong-Rhyong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • KOSC(Korea Ocean Satellite Center), the primary operational organization for GOCI(Geostationary Ocean Color Imager), was established in KORDI(Korea Ocean Research & Development Institute). For a stable distribution service of GOCI data, various systems were installed at KOSC as follows: GOCI Data Acquisition System, Image Pre-processing System, GOCI Data Processing System, GOCI Data Distribution System, Data Management System, Total Management & Control System and External Data Exchange System. KOSC distributes the GOCI data 8 times to user at 1-hour intervals during the daytime in near-real time according to the distribution policy. Finally, we introduce the KOSC website for users to search, request and download GOCI data.

Current Status and Results of In-orbit Function, Radiometric Calibration and INR of GOCI-II (Geostationary Ocean Color Imager 2) on Geo-KOMPSAT-2B (정지궤도 해양관측위성(GOCI-II)의 궤도 성능, 복사보정, 영상기하보정 결과 및 상태)

  • Yong, Sang-Soon;Kang, Gm-Sil;Huh, Sungsik;Cha, Sung-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1235-1243
    • /
    • 2021
  • Geostationary Ocean Color Imager 2 (GOCI-II) on Geo-KOMPSAT-2 (GK2B)satellite was developed as a mission successor of GOCI on COMS which had been operated for around 10 years since launch in 2010 to observe and monitor ocean color around Korean peninsula. GOCI-II on GK2B was successfully launched in February of 2020 to continue for detection, monitoring, quantification, and prediction of short/long term changes of coastal ocean environment for marine science research and application purpose. GOCI-II had already finished IAC and IOT including early in-orbit calibration and had been handed over to NOSC (National Ocean Satellite Center) in KHOA (Korea Hydrographic and Oceanographic Agency). Radiometric calibration was periodically conducted using on-board solar calibration system in GOCI-II. The final calibrated gain and offset were applied and validated during IOT. And three video parameter sets for one day and 12 video parameter sets for a year was selected and transferred to NOSC for normal operation. Star measurement-based INR (Image Navigation and Registration) navigation filtering and landmark measurement-based image geometric correction were applied to meet the all INR requirements. The GOCI2 INR software was validated through INR IOT. In this paper, status and results of IOT, radiometric calibration and INR of GOCI-II are analysed and described.

Validation of the semi-analytical algorithm for estimating vertical underwater visibility using MODIS data in the waters around Korea

  • Kim, Sun-Hwa;Yang, Chan-Su;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.601-610
    • /
    • 2013
  • As a standard water clarity variable, the vertical underwater visibility, called Secchi depth, is estimated with ocean color satellite data. In the present study, Moderate Resolvtion Imaging Spectradiometer (MODIS) data are used to measure the Secchi depth which is a useful indicator of ocean transparency for estimating the water quality and productivity. To estimate the Secchi depth $Z_v$, the empirical regression model is developed based on the satellite optical data and in-situ data. In the previous study, a semi-analytical algorithm for estimating $Z_v$ was developed and validated for Case 1 and 2 waters in both coastal and oceanic waters using extensive sets of satellite and in-situ data. The algorithm uses the vertical diffuse attenuation coefficient, $K_d$($m^{-1}$) and the beam attenuation coefficient, c($m^{-1}$) obtained from satellite ocean color data to estimate $Z_v$. In this study, the semi-analytical algorithm is validated using temporal MODIS data and in-situ data over the Yellow, Southern and East Seas including Case 1 and 2 waters. Using total 156 matching data, MODIS $Z_v$ data showed about 3.6m RMSE value and 1.7m bias value. The $Z_v$ values of the East Sea and Southern Sea showed higher RMSE than the Yellow Sea. Although the semi-analytical algorithm used the fixed coupling constant (= 6.0) transformed from Inherent Optical Properties (IOP) and Apparent Optical Properties (AOP) to Secchi depth, various coupling constants are needed for different sea types and water depth for the optimum estimation of $Z_v$.

SATELLITE DETECTION OF RED TIDE ALGAL BLOOMS IN TURBID COASTAL WATERS

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.471-474
    • /
    • 2006
  • Several planktonic dinoflagellates, including Cochlodinium polykrikoides (p), are known to produce red tides responsible for massive fish kills and serious economic loss in turbid Northwest Pacific (Korean and neighboring) coastal waters during summer and fall seasons. In order to mitigate the impacts of these red tides, it is therefore very essential to detect, monitor and forecast their development and movement using currently available remote sensing technology because traditional ship-based field sampling and analysis are very limited in both space and temporal frequency. Satellite ocean color sensors, such as Sea-viewing Wide Field-of-view Sensor (SeaWiFS), are ideal instruments for detecting and monitoring these blooms because they provide relatively high frequency synoptic information over large areas. Thus, the present study attempts to evaluate the red tide index methods (previously developed by Ahn and Shanmugam et al., 2006) to identify potential areas of red tides from SeaWiFS imagery in Korean and neighboring waters. Findings revealed that the standard spectral ratio algorithms (OC4 and LCA) applied to SeaWiFS imagery yielded large errors in Chl retrievals for coastal areas, besides providing false information about the encountered red tides in the focused waters. On the contrary, the RI coupled with the standard spectral ratios yielded comprehensive information about various ranges of algal blooms, while RCA Chl showing a good agreement with in-situ data led to enhanced understanding of the spatial and temporal variability of the recent red tide occurrences in high scattering and absorbing waters off the Korean and Chinese coasts. The results suggest that the red tide index methods for the early detection of red tides blooms can provide state managers with accurate identification of the extent and location of blooms as a management tool.

  • PDF