• Title/Summary/Keyword: Color Image Steganography

Search Result 12, Processing Time 0.026 seconds

An Adaptive Steganography of Color Image Using Bit-Planes and Multichannel Characteristics (비트플레인 및 다중채널 특성을 이용한 칼라 영상의 적응 스테가노그라피)

  • Jung Sung-Hwan;Lee Sin-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.7
    • /
    • pp.961-973
    • /
    • 2005
  • In this paper, we proposed an adaptive steganography of color image using bit-planes and multichannel characteristics. Applying fixing threshold, if we insert information into all bit-planes of RGB channel, each channels showed different image quality. Therefore, we first defined the channel weight and the bit-plane weight to solve the fixing threshold problem of BPCS (bit-plane complexity steganography) method. We then proposed a new adaptive threshold method using the bit-plane weight of channels and the bit-plane complexity of cover image to increase insertion capacity adaptively In the experiment, we inserted information into the color images with the same image quality and same insertion capacity, and we analyzed the Insertion capacity and image quality. As a result, the proposed method increased the insertion capacity and improved the image quality than BPCS method.

  • PDF

A Novel RGB Image Steganography Using Simulated Annealing and LCG via LSB

  • Bawaneh, Mohammed J.;Al-Shalabi, Emad Fawzi;Al-Hazaimeh, Obaida M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.143-151
    • /
    • 2021
  • The enormous prevalence of transferring official confidential digital documents via the Internet shows the urgent need to deliver confidential messages to the recipient without letting any unauthorized person to know contents of the secret messages or detect there existence . Several Steganography techniques such as the least significant Bit (LSB), Secure Cover Selection (SCS), Discrete Cosine Transform (DCT) and Palette Based (PB) were applied to prevent any intruder from analyzing and getting the secret transferred message. The utilized steganography methods should defiance the challenges of Steganalysis techniques in term of analysis and detection. This paper presents a novel and robust framework for color image steganography that combines Linear Congruential Generator (LCG), simulated annealing (SA), Cesar cryptography and LSB substitution method in one system in order to reduce the objection of Steganalysis and deliver data securely to their destination. SA with the support of LCG finds out the optimal minimum sniffing path inside a cover color image (RGB) then the confidential message will be encrypt and embedded within the RGB image path as a host medium by using Cesar and LSB procedures. Embedding and extraction processes of secret message require a common knowledge between sender and receiver; that knowledge are represented by SA initialization parameters, LCG seed, Cesar key agreement and secret message length. Steganalysis intruder will not understand or detect the secret message inside the host image without the correct knowledge about the manipulation process. The constructed system satisfies the main requirements of image steganography in term of robustness against confidential message extraction, high quality visual appearance, little mean square error (MSE) and high peak signal noise ratio (PSNR).

Secure Steganography Based on Triple-A Algorithm and Hangul-jamo (Triple-A 알고리즘과 한글자모를 기반한 안전한 스테가노그래피)

  • Ji, Seon-Su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.507-513
    • /
    • 2018
  • Steganography is a technique that uses hidden messages to prevent anyone apart from knowing the existence of a secret message, except the sender and trusted recipients. This paper applies 24 bit color image as cover medium. And a 24-bit color image has three components corresponding to red, green and blue. This paper proposes an image steganography method that uses Triple-A algorithm to hide the secret (Hangul) message by arbitrarily selecting the number of LSB bits and the color channel to be used. This paper divides the secret character into the chosung, jungsung and jongsung, and applies crossover, encryption and arbitrary insertion positions to enhance robustness and confidentiality. Experimental results of the proposed method show that insertion capacity and correlation are excellent and acceptable image quality level. Also, considering the image quality, it was confirmed that the size of LSB should be less than 2.

High-Capacity Robust Image Steganography via Adversarial Network

  • Chen, Beijing;Wang, Jiaxin;Chen, Yingyue;Jin, Zilong;Shim, Hiuk Jae;Shi, Yun-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.366-381
    • /
    • 2020
  • Steganography has been successfully employed in various applications, e.g., copyright control of materials, smart identity cards, video error correction during transmission, etc. Deep learning-based steganography models can hide information adaptively through network learning, and they draw much more attention. However, the capacity, security, and robustness of the existing deep learning-based steganography models are still not fully satisfactory. In this paper, three models for different cases, i.e., a basic model, a secure model, a secure and robust model, have been proposed for different cases. In the basic model, the functions of high-capacity secret information hiding and extraction have been realized through an encoding network and a decoding network respectively. The high-capacity steganography is implemented by hiding a secret image into a carrier image having the same resolution with the help of concat operations, InceptionBlock and convolutional layers. Moreover, the secret image is hidden into the channel B of carrier image only to resolve the problem of color distortion. In the secure model, to enhance the security of the basic model, a steganalysis network has been added into the basic model to form an adversarial network. In the secure and robust model, an attack network has been inserted into the secure model to improve its robustness further. The experimental results have demonstrated that the proposed secure model and the secure and robust model have an overall better performance than some existing high-capacity deep learning-based steganography models. The secure model performs best in invisibility and security. The secure and robust model is the most robust against some attacks.

Combining Encryption and Preservation in Information Security to Secure Sending a Message

  • Nooh, Sameer
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.285-291
    • /
    • 2022
  • With the growing exchange of data between individuals and institutions through various electronic communication, valuable data protection is in high demand to ensure that it is not hacked and that privacy is protected. Many security techniques, such as encryption and steganography, have emerged to prevent security breaches. The purpose of this research is to integrate cryptographic and steganography techniques to secure text message sending. The Rijndael algorithm was used to encrypt the text message, and the Least Significant Bit algorithm was also used to hide the encrypted message in a color image. Experiments on the suggested method have proven that it can improve the security of sent messages due to the human eye's inability to identify the original image from the image after it has been covered, as well as the encryption of the message using a password.

Research on Steganography in Emulab Testbed (Emulab 테스트베드 환경에서의 분산 스테가노그래피 연구)

  • Jung, Ki-Hyun;Seok, Woo-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.79-84
    • /
    • 2015
  • Steganography is to conceal the existence of secrete data itself. The Emulab is a framework to provide real systems and network topology that can set up at anytime by researchers. In this paper, we show that steganography techniques can be applied in the Emulab environment. Steganography methods are evaluated on a standalone and sharing environments using the color bitmap images. The cover image is divided into RGB channels and then embedded the secret data at each client. The experimental results demonstrate that execution time is better in client/server environment as cover image size is increasing.

Adaptive LSB Steganography for High Capacity in Spatial Color Images (컬러이미지 대상 고용량 적응형 LSB 스테가노그라피)

  • Lee, Haeyoung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • This paper presents a new adaptive LSB steganography for high capacity in spatial color images. The number of least signi ficant bit (LSB) of each RGB component in a color image pixel, to replace with the data bits to be hidden, was determine d through analysis of the worst case peak signal noise ratio (PSNR). In addition, the combination of the number of bits is determined adaptively according to image content. That is, 70% of the data to be hidden is proposed to be replaced with 3 bit LSB of two components, 2 bit LSB of the rest component, and 30% be replaced with 4 bit LSB of each RGB compon ent. To find edge areas in an image, delta sorting in local area is also suggested. Using the proposed method, the data cap acity is 9.2 bits per pixel (bpp). The average PSNR value of the tested images with concealed data of up to 60Kbyte was 43.9 db and also natural histograms were generated.

The Adaptive Steganography Using Color Image of Compexity (컬러 이미지의 복잡도를 이용한 적응적 스테가노그라피)

  • Ko, Bong-Soo;Kim, Jang-Hyung;Yang, Dong-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.250-253
    • /
    • 2006
  • In this paper, we proposed a new method of the Adaptive steganography using complexity on bit planes of color image. Applying fixing threshold and variable length, if insert information into all bit plans, all bit plans showed different image quality. Therefore, we first defined the complexity on bit plane and data complexity, similarity insert information into bit plans. As a result, the proposed method increased the insertion capacity and improved the image quality than fixing threshold and variable length method.

  • PDF

A Secure Method for Color Image Steganography using Gray-Level Modification and Multi-level Encryption

  • Muhammad, Khan;Ahmad, Jamil;Farman, Haleem;Jan, Zahoor;Sajjad, Muhammad;Baik, Sung Wook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1938-1962
    • /
    • 2015
  • Security of information during transmission is a major issue in this modern era. All of the communicating bodies want confidentiality, integrity, and authenticity of their secret information. Researchers have presented various schemes to cope with these Internet security issues. In this context, both steganography and cryptography can be used effectively. However, major limitation in the existing steganographic methods is the low-quality output stego images, which consequently results in the lack of security. To cope with these issues, we present an efficient method for RGB images based on gray level modification (GLM) and multi-level encryption (MLE). The secret key and secret data is encrypted using MLE algorithm before mapping it to the grey-levels of the cover image. Then, a transposition function is applied on cover image prior to data hiding. The usage of transpose, secret key, MLE, and GLM adds four different levels of security to the proposed algorithm, making it very difficult for a malicious user to extract the original secret information. The proposed method is evaluated both quantitatively and qualitatively. The experimental results, compared with several state-of-the-art algorithms, show that the proposed algorithm not only enhances the quality of stego images but also provides multiple levels of security, which can significantly misguide image steganalysis and makes the attack on this algorithm more challenging.

Robust Watermarking Scheme Based on Radius Weight Mean and Feature-Embedding Technique

  • Yang, Ching-Yu
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.512-522
    • /
    • 2013
  • In this paper, the radius weight mean (RWM) and the feature-embedding technique are used to present a novel watermarking scheme for color images. Simulations validate that the stego-images generated by the proposed scheme are robust against most common image-processing operations, such as compression, color quantization, bit truncation, noise addition, cropping, blurring, mosaicking, zigzagging, inversion, (edge) sharpening, and so on. The proposed method possesses outstanding performance in resisting high compression ratio attacks: JPEG2000 and JPEG. Further, to provide extra hiding storage, a steganographic method using the RWM with the least significant bit substitution technique is suggested. Experiment results indicate that the resulting perceived quality is desirable, whereas the peak signal-to-noise ratio is high. The payload generated using the proposed method is also superior to that generated by existing approaches.