• Title/Summary/Keyword: Color Image Processing

Search Result 1,049, Processing Time 0.03 seconds

Using the CIELAB Color System for Soil Color Identification Based on Digital Image Processing (디지털 이미지 프로세싱 기반 토색 분석을 위한 CIELAB 색 표시계 활용 연구)

  • Baek, Sung-Ha;Park, Ka-Hyun;Jeon, Jun-Seo;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.61-71
    • /
    • 2022
  • Soil color is used to determine soil classification and its physical, chemical, and biological properties. Visual determination is the most commonly used method for identifying soil color. However, it is subjective and, in many cases, non-repeatable. Digital image processing obtains useful information from digital images, accelerates soil classification, and enables the rapid identification of soil types in a field. This study develops a digital image processing-based soil color analysis technology that can consider irregular light conditions in the field. The digital image studio was designed to simulate the characteristics of natural light (illuminance and color temperature). Also, digital images of two soil samples (Jumoonjin sand and Anseong weathered soil) were captured under 12 different light conditions. For the RGB and CIELAB color systems, soil color intensities of 24 images were obtained using digital image processing. CIELAB was suitable for dealing with irregular light conditions in the field.

Color Image Coding Based on Shape-Adaptive All Phase Biorthogonal Transform

  • Wang, Xiaoyan;Wang, Chengyou;Zhou, Xiao;Yang, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.114-127
    • /
    • 2017
  • This paper proposes a color image coding algorithm based on shape-adaptive all phase biorthogonal transform (SA-APBT). This algorithm is implemented through four procedures: color space conversion, image segmentation, shape coding, and texture coding. Region-of-interest (ROI) and background area are obtained by image segmentation. Shape coding uses chain code. The texture coding of the ROI is prior to the background area. SA-APBT and uniform quantization are adopted in texture coding. Compared with the color image coding algorithm based on shape-adaptive discrete cosine transform (SA-DCT) at the same bit rates, experimental results on test color images reveal that the objective quality and subjective effects of the reconstructed images using the proposed algorithm are better, especially at low bit rates. Moreover, the complexity of the proposed algorithm is reduced because of uniform quantization.

A Study on the Color Harmony Scheme of the Bathroom Based On Digital Color Image Processing (디지털 이미지 색채분석을 이용한 욕실공간 색채배색에 관한 연구)

  • 정현원;이현수
    • Korean Institute of Interior Design Journal
    • /
    • no.38
    • /
    • pp.217-224
    • /
    • 2003
  • The purpose of this study is to analyze the recent trend color of bathroom based on analysis result of digital color image processing, to analyze the emotional color of that, and to suggest the harmony color combination for the bathroom. It leads to the two final results. That is, the main color of bathroom image is recognized as three color classifications such as YR-Y, Y-GY, PB-P, 2) from the point of emotional aspect, the trend color of the bathroom can be classified into four image categories: 'modern', 'mild', 'elegant', 'natural'. Finally, under these categories, this paper propose 12 color harmony schema which can be applied to color in, especially bathroom Interior design.

Image Quality Enhancement Method using Retinex in HSV Color Space and Saturation Correction (HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법)

  • Kang, Han-Sol;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1481-1490
    • /
    • 2017
  • This paper presents an image quality enhancement algorithm for dark image acquired under poor lighting condition. Various retinex algorithms which are human perception-based image processing methods were proposed to solve this problem. Although MSR(Multi-Scale Retinex) among these algorithm works well under most lighting condition, it shows color degradation because their separate nonlinear processing of RGB color channels. To compensate for the loss of the color, MSRCR(Multi-Scale Retinex with Color Restoration) was proposed. However, it requires high computational load and has additional parameters that need to be adjusted according to input image. In order to overcome this problem, a new retinex algorithm based on MSR is proposed in this paper. The proposed method consists of V channel MSR, saturation correction, and separate contrast enhancement process. Experimental results show that the subjective and objective image quality of the proposed method better than those of the conventional methods.

Color Image Segmentations of a Vitiligo Skin Image with Android Platform Smartphone (안드로이드 기반의 스마트폰을 활용한 백반증 피부 영상 분할)

  • Park, Sang-Eun;Kim, Hyun-Tae;Kim, Jeong-Hwan;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.173-178
    • /
    • 2014
  • In this study, the new color image processing algorithms with an android-based mobile device are developed to detect the abnormal color densities in a skin image and interpret them as the vitiligo lesions. Our proposed method is firstly based on transforming RGB data into HSI domain and segmenting the imag into the vitiligo-skin candidates by applying Otsu's threshold algorithm. The structure elements for morphological image processing are suggested to delete the spurious regions in vitiligo regions and the image blob labeling algorithm is applied to compare RGB color densities of the abnormal skin region with them of a region of interest. Our suggested color image processing algorithms are implemented with an android-platform smartphone and thus a mobile device can be utilized to diagnose or monitor the patient's skin conditions under the environments of pervasive healthcare services.

Adaptive White Point Extraction based on Dark Channel Prior for Automatic White Balance

  • Jo, Jieun;Im, Jaehyun;Jang, Jinbeum;Yoo, Yoonjong;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • This paper presents a novel automatic white balance (AWB) algorithm for consumer imaging devices. While existing AWB methods require reference white patches to correct color, the proposed method performs the AWB function using only an input image in two steps: i) white point detection, and ii) color constancy gain computation. Based on the dark channel prior assumption, a white point or region can be accurately extracted, because the intensity of a sufficiently bright achromatic region is higher than that of other regions in all color channels. In order to finally correct the color, the proposed method computes color constancy gain values based on the Y component in the XYZ color space. Experimental results show that the proposed method gives better color-corrected images than recent existing methods. Moreover, the proposed method is suitable for real-time implementation, since it does not need a frame memory for iterative optimization. As a result, it can be applied to various consumer imaging devices, including mobile phone cameras, compact digital cameras, and computational cameras with coded color.

Image processing technique for Optical Camera Communication (OCC에서의 이미지 처리 기술)

  • Nguyen, Trang;Le, Nam-Tuan;Jang, Yeong Min
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.47-52
    • /
    • 2014
  • This paper introduces the Optical Camera Communications (OCC) using image processing technique. The architecture and operation of OCC system are given. To enhance data rate which is limited by sampling operation of commercial 30fps camera, multi colors transmission technique is employed, leading to the importance of color image processing technique. Multi color encoding and image processing based decoding will be proposed in the paper.

COLOR PENCIL SKETCH IMAGE GENERATION BASED ON FILTERING AND LINEAR INTERPOLATION (필터링과 선형보간을 이용한 색연필스케치영상 생성)

  • HITIMANA, Eric;Gwun, Oubong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.623-625
    • /
    • 2012
  • In this paper, we present a method to automatically generate a color pencil sketch image from a photo. First the image is converted into a sketch using a gradient estimation and then the color pencil sketch is produced by linear interpolation with original image and the sketched image. The experimental results show that the final image has a visual aspect of a color pencil sketch like image.

On-line Inspection Algorithm of Brown Rice Using Image Processing (영상처리를 이용한 현미의 온라인 품위판정 알고리즘)

  • Kim, Tae-Min;Noh, Sang-Ha
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.138-145
    • /
    • 2010
  • An on-line algorithm that discriminates brown rice kernels on their echelon feeder using color image processing is presented for quality inspection. A rapid color image segmentation algorithm based on Bayesian clustering method was developed by means of the look-up table which was made from the significant clusters selected by experts. A robust estimation method was presented to improve the stability of color clusters. Discriminant analysis of color distributions was employed to distinguish nine types of brown rice kernels. Discrimination accuracies of the on-line discrimination algorithm were ranged from 72% to 85% for the sound, cracked, green-transparent and green-opaque, greater than 93% for colored, red, and unhulled, about 92% for white-opaque and 67% for chalky, respectively.

Implementation of Intelligent Expert System for Color Measuring/Matching (칼라 매저링/매칭용 지능형 전문가 시스템의 구현)

  • An, Tae-Cheon;Jang, Gyeong-Won;O, Seong-Gwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.589-598
    • /
    • 2002
  • The color measuring/matching expert system is implemented with a new color measuring method that combines intelligent algorithms with image processing techniques. Color measuring part of the proposed system preprocesses the scanned original color input images to eliminate their distorted components by means of the image histogram technique of image pixels, and then extracts RGB(Red, Green, Blue)data among color information from preprocessed color input images. If the extracted RGB color data does not exist on the matching recipe databases, we can measure the colors for the user who want to implement the model that can search the rules for the color mixing information, using the intelligent modeling techniques such as fuzzy inference system and adaptive neuro-fuzzy inference system. Color matching part can easily choose images close to the original color for the user by comparing information of preprocessed color real input images with data-based measuring recipe information of the expert, from the viewpoint of the delta Eformula used in practical process.