DOI QR코드

DOI QR Code

On-line Inspection Algorithm of Brown Rice Using Image Processing

영상처리를 이용한 현미의 온라인 품위판정 알고리즘

  • Kim, Tae-Min (Intelligent Robotics Group, NASA Ames Research Center) ;
  • Noh, Sang-Ha (Department of Biosystems Engineering, Seoul National University)
  • Received : 2010.02.22
  • Accepted : 2010.04.12
  • Published : 2010.04.25

Abstract

An on-line algorithm that discriminates brown rice kernels on their echelon feeder using color image processing is presented for quality inspection. A rapid color image segmentation algorithm based on Bayesian clustering method was developed by means of the look-up table which was made from the significant clusters selected by experts. A robust estimation method was presented to improve the stability of color clusters. Discriminant analysis of color distributions was employed to distinguish nine types of brown rice kernels. Discrimination accuracies of the on-line discrimination algorithm were ranged from 72% to 85% for the sound, cracked, green-transparent and green-opaque, greater than 93% for colored, red, and unhulled, about 92% for white-opaque and 67% for chalky, respectively.

Keywords

References

  1. Ballard, D. H. and C. M. Brown. 1982. Computer Vision. Prentice-Hall, Englewood Cliffs, USA.
  2. Berlage, A. G., T. M. Cooper and J. F. Aristazabal. 1988. Machine vision identification of diploid and tetraploid ryegrass seed. Transactions of ASAE 31(1):24-27. https://doi.org/10.13031/2013.30659
  3. Churchill, D. B., D. M. Bilsland and T. M. Cooper. 1992. Comparison of machine vision with human measurement of seed dimensions. Transactions of ASAE 35(1):61-64. https://doi.org/10.13031/2013.28570
  4. Cooper, T. M. and A. G. Berlage. 1986. Integrating database and machine vision seed measuring process. ASAE Paper No. 86-3062. St. Joseph, MI, USA.
  5. Dekker, E. and P. de Visser. 1988. A machine vision system for rice-grading. Technical Report. Wageningen University & Research Centre, Netherland.
  6. Ding, K., R. V. Morey, W. F. Wilcke and D. J. Hansen. 1990. Corn quality evaluation with computer vision. ASAE Paper No. 90-3532. St. Joseph, MI, USA.
  7. Gonzalez, R. C. and R. E. Woods. 1992. Digital Image Processing. Addison Wesley, New York, USA.
  8. Gunasekaran, S., T. M. Cooper and A. G. Berlage. 1988. Evaluating quality factors of corn and soybeans using a computer vision system. Transactions of ASAE 31(4):1264-1271. https://doi.org/10.13031/2013.30856
  9. Inoue, S. 1986. Video Microscopy. Plenum Press, New York, USA.
  10. Kranzler, G. A. 1985. Applying digital image processing in agriculture. Agricultural Engineering 66(3):11-13.
  11. Lee, J. W. 1992. Computer vision system for analysis of geometrical characteristics of agricultural products and microscopic particles. Seoul National University Ph.D. thesis. (In Korean)
  12. Liao, K., M. R. Paulsen, J. F. Reid, B. C. Ni and E. P. Bonifacio-Maghirang. 1993. Corn kernel breakage classification by machine vision using a neural network classifier. Transactions of ASAE 36(6):1949-1953. https://doi.org/10.13031/2013.28547
  13. McDonald, T. and Y. R. Chen. 1990. Application of morphological image processing in agriculture. Transactions of ASAE 33(4):1345-1352.
  14. Miller, B. K. and M. J. Delwiche. 1991. Peach defect detection with machine vision. Transactions of ASAE 34(6): 2588-2597. https://doi.org/10.13031/2013.31911
  15. Ni, B., M. R. Paulsen, K. Liao and J. F. Reid. 1993. An automated corn kernel inspection system using machine vision. ASAE Paper No. 93-3032. St. Joseph, MI, USA.
  16. Noh, S. H., C. S. Hwang and J. W. Lee. 1997. Algorithm for discriminating of brown rice kernels using machine vision. Korean Society for Agricultural Machinery 22(3):295-302. (In Korean)
  17. Paulsen, M. R. and W. F. McClure. 1985. Illumination for computer vision systems. Transactions of ASAE 29(5):1398-1404.
  18. Press, W. H. 1992. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK.
  19. Schalkoff, R. J. 1992. Pattern Recognition: Statistical, Structural and Neural Approaches. John Wiley & Sons Inc, New York, USA.
  20. Shearer, S. A. and F. A. Payne. 1990. Color and defect sorting of bell peppers using machine vision. Transactions of ASAE 33(6):2045-2050.
  21. Tou, J. T. and R. C. Gonzalez. 1974. Pattern Recognition Principles. Addison Wesley, New York, USA.
  22. Zayas, I., H. Converse and J. Steele. 1990. Discrimination of whole from broken corn kernels with image analysis. Transactions of ASAE 33(5):1642-1646. https://doi.org/10.13031/2013.31521
  23. Zayas, I., Y. Pomeranz and F. S. Lai. 1989. Discrimination of wheat and nonwheat components in grain samples by image analysis. Cereal Chemistry 66(3):233-237.

Cited by

  1. Detection of Candidate Areas for Automatic Identification of Scirtothrips Dorsalis vol.17, pp.6, 2012, https://doi.org/10.9723/jksiis.2012.17.6.051