• Title/Summary/Keyword: Colon cancer cells

Search Result 549, Processing Time 0.024 seconds

Establishment of Doxorubicin-resistant Subline Derived from HCT15 Human Colorectal Cancer Cells

  • Choi, Sang-Un;Kim, Nam-Young;Choi, Eun-Jung;Kim, Kwang-Hee;Lee, Chong-Ock
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.342-347
    • /
    • 1996
  • Doxorubicin, one of the clinically most useful anticancer agents, is used alone or in combination with other drugs against a wide variety of tumors, recently. But cancer cells developed resistance to this agent in many ways. This resistance is an important limiting factor of doxorubicin for anticancer drug. We newly established doxorubicin-resistant HCT15/CL02 subline from parental HCT15 human adenocarcinoma colon cancer cells. HCT15/CL02 revealed resistance to doxorubicin about 85-fold of its parental cells, and it also revealed cross-resistance to actinomycin D, etoposide and vinblastine but not to displatin and tamoxifen. And verapamil, a reversal agent of multidrug-resistance (MDR) by P-glycoprotein, elevated the cytotoxicity of doxorubicin against both HCT15 and GCT15/CL02 cells. But the relative resistant rate was not reduced. Verapamil had no effects on the tosicity of cisplatin to the both cell lines. These results indicate that HCT15/CL02 cells have some functionally complex mechanisms for MDR.

  • PDF

Combined Treatment with 5-Fluorouracil and Capsaicin Induces Apoptosis in HT-29 Human Colon Cancer Cells (5-Fluorouracil과 Capsaicin의 병용에 의한 HT-29 대장암세포 사멸 증진 효과)

  • Lee, Yun-Seok;Lee, Jong-Suk;Kim, Jung-Ae
    • YAKHAK HOEJI
    • /
    • v.53 no.4
    • /
    • pp.184-188
    • /
    • 2009
  • Fluorouracil (5-FU) is one of the most widely used chemotherapeutic drugs in the treatment of advanced colorectal cancer patients. Capsaicin (N-vanillyl-8-methyl-alpha-nonenamide), a spicy component of hot pepper, is a homovanillic acid derivative that preferentially induces cancer cells to undergo apoptosis. The purpose of the present study is to examine whether capsaicin enhances the anticancer effect of 5-fluorouracil in HT-29 human colon cancer cells by inducing apoptosis, and whether PPARgamma is involved in the capsaicin action in combination treatment with 5-FU. Treatment of the cells with either 5-FU or capsaicin alone for 48 h had little effect on the cell viability up to $50{\mu}M$ concentration, whereas co-treatment of the cells with capsaicin in the presence of 5-FU for 48 h significantly decreased the cell viability in a concentration-dependent manner. In addition, caspase-3 activity, a marker enzyme for apoptosis, was significantly increased by the combined treatment with 5-FU and capsaicin compared to the 5-FU or capsaicin alone treatment. Also, treatment with troglitazone, a peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) agonist, further enhanced the effect of the combination treatment on the cell viability and caspase-3 activity, and bisphenol A diglycidyl ether (BADGE), a $PPAR{\gamma}$ antagonist, blocked the effect of the combination treatment. These results suggest that the combination treatment of HT-29 cells with 5-FU and capsaicin induces apoptotic cell death at relatively low concentration than each drug alone, and the combination treatment may be associated with the $PPAR{\gamma}$ pathway activation.

Inhibitory Effect of Low-molecularized Polymannuronate on Proliferation and DNA Synthesis of Human Colon Cancer Cells (저분자 polymannuronate의 인체 대장암세포 증식 및 DNA 합성 저해 효과)

  • Kim In-Hye;Nam Taek-Jeong
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.857-862
    • /
    • 2005
  • This study investigated the proliferation and DNA synthesis inhibitory effect of concentrations ($0.01\%$, $0.1\%$, $0.25\%$, $0.5\%$) when added whole molecular-, 40 kDa-, or 10 kDa polymannuronate on human colon cancer cells, HT-29, DLD-1, and WiDr, in vitro. In order to determine the proliferation inhibitory effect of low-molecularized polymannuronate, the treatment of whole molecular-, 40 kDa-, 10 kDa-, polymannuronate ($0.25\%$) to the HT-29 cancer cells inhibited proliferation of cancer cells by $41\%$, $69.1\%$, and $75.6\%$, respectively. DLD-1 cancer cell was not relation of molecular weight and concentration. WiDr cancer cell depend on concentration without molecular weight. In addition, whole molecular-, 40 kDa-, 10 kDa poly mannuronate ($0.25\%$) significantly inhibited DNA synthesis of HT-29 cancer .cells by $78\%$, $58\%$, and $56\%$, respectively. And morphological changes not found under microscope by polymannuronate. Therefore polymannuronate would be helpful to colon cancer treatment as well as cancer prevention and this study would be the basic source for further research of polymannuronate.

Effects on Hot Water Extract of Schizandra chinensis on Colon Cancer (오미자 열수추출물의 대장암세포 증식억제 효과)

  • Ryu, Min-Ju;Chung, Ha-Sook
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.64-69
    • /
    • 2011
  • The anticancer activity of Schizandra chinensis Baillon was investigated for the development of functional food resources. The antiproliferative activity of hot water extracts of Schizandra chinensis Baillon in human colon cancer cell line (HT-29) were identified using cell viability, morphology study, cell cycle and RT-PCR analyses. HT-29 cells were cultured in several concentrations (0, 1.0, 2.0, 4.0 mg/mL) of water extracts of Schizandra chinensis Baillon. In our study, colon cancer cell growth could be inhibited by hot water extracts of Schizandra chinensis Baillon in a dose-dependent manners. It was associated with morphological changes and apoptotic cell death with cell shrinking, chromatin condensation, apoptotic bodies and cell cycle analysis. These results suggest that Schizandra chinensis Baillon may inhibit the growth of human colon cancer cells by various apoptosis-aiding activities as well as apoptosis itself.

Increased Antitumor Immunity of Mouse GM-CSF in Mouse Colon Tumor (CT-26) Model

  • Kim, Mi Kyung;Lee, Yu Kyoung;Lee, Yeon Sook;Hwang, Tae Ho
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.303-309
    • /
    • 2013
  • Oncolytic vaccinia virus is an engineered vaccinia virus that selectively destroys cancer cells and induces tumor immune response. Oncolytic vaccinia expressing mouse GM-CSF showed cytotoxic activity against various kinds of cancer cells when oncolytic vaccinia virus expressing human GM-CSF and mouse GM-CSF is intravenously administered in the mouse CT26 colon tumor model. Cancer cells treated with isolated immunoglobulin G from the serum with complement showed these cytotoxic activity and complement observed dose-dependent cytotoxic effect. These results suggest that oncolytic vaccinia virus expressing mouse GM-CSF can increase oncolytic vaccinia virus by inducing anticancer antibody in a mouse tumor model. Further studies are needed on antitumor immunity of GM-CSF.

Proteomic Approach to the Cytotoxicity of 5-FU(Fluorouracil) in Colon Cancer Cells (대장암 세포에서 5-FU(Fluorouracil)의 세포독성과 관련된 단백체 분석)

  • Lee, Seo-Young;Song, Jin-Su;Roh, Si-Hun;Kim, Geun-Tae;Hong, Soon-Sun;Kim, Hie-Joon;Kwon, Sung-Won;Park, Jeong-Hill
    • YAKHAK HOEJI
    • /
    • v.53 no.3
    • /
    • pp.145-150
    • /
    • 2009
  • We evaluated cytotoxic effect based on the MTT assay and identified altered proteins in 5-FU(fluorouracil) treated HT29 cells using two-dimensional gel electrophoresis and MALDI-TOF/TOF-MS. As proteins inducing apoptosis, siah binding protein 1 and p47 protein isoform a were up-regulated and tumor protein translationally-controlled 1 was down-regulated by 5-FU treatment. And mannose 6 phosphate receptor binding protein 1 controls DNA mismatch repair system was increased. We suggest 5-FU promotes a cytotoxicity under the action of these proteins in colon cancer cells.

Effect of Root Extracts of Medicinal Herb Glycyrrhiza glabra on HSP90 Gene Expression and Apoptosis in the HT-29 Colon Cancer Cell Line

  • Nourazarian, Seyed Manuchehr;Nourazarian, Alireza;Majidinia, Maryam;Roshaniasl, Elmira
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8563-8566
    • /
    • 2016
  • Colorectal cancer is one of the most common lethal cancer types worldwide. In recent years, widespread and large-scale studies have been done on medicinal plants for anti-cancer effects, including Glycyrrhiza glabra. The aim of this study was to evaluate the effects of an ethanol extract Glycyrrhiza glabra on the expression of HSP90, growth and apoptosis in the HT-29 colon cancer cell line. HT-29 cells were treated with different concentrations of extract (50,100,150, and $200{\mu}g/ml$). For evaluation of cell proliferation and apoptosis, we used MTT assay and flow cytometry technique, respectively. RT-PCR was also carried out to evaluate the expression levels of HSP90 genes. Results showed that Glycyrrhiza glabra inhibited proliferation of the HT-29 cell line at a concentration of $200{\mu}g/ml$ and this was confirmed by the highest rate of cell death as measured by trypan blue and MTT assays. RT-PCR results showed down-regulation of HSP90 gene expression which implied an ability of Glycyrrhiza glabra to induce apoptosis in HT-29 cells and confirmed its anticancer property. Further studies are required to evaluate effects of the extract on other genes and also it is necessary to make an extensive in vivo biological evaluation and subsequently proceed with clinical evaluations.

Anti-Proliferative Effect of Polysaccharides from Salicornia herbacea on Induction of G2/M Arrest and Apoptosis in Human Colon Cancer Cells

  • Ryu, Deok-Seon;Kim, Seon-Hee;Lee, Dong-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1482-1489
    • /
    • 2009
  • In this study, we investigated the anti-proliferative effect of polysaccharides from Salicornia herbacea on HT-29 human colon cancer cells. Crude polysaccharides from S. herbacea (CS) were prepared by extraction with hot steam water, and fine polysaccharides from S. herbacea (PS) were obtained through further size exclusion chromatography. The anti-proliferative effect of CS and PS were measured using the MTS assay, apoptosis analysis, cell cycle analysis, and RT-PCR. HT-29 cells were treated with CS or PS at different dosages (0.5, 1, 2, 4 mg $ml^{-1}$) for 24 or 48 h. CS and PS inhibited proliferation and stimulated apoptosis of cells in a dose-dependent manner. Flow cytometric analysis after Annexin V-FITC and PI staining revealed that treatment with CS or PS increased total apoptotic death of cells to 24.99% or 91.59%, respectively, in comparison with the control (13.51 %). PS increased early apoptotic death substantially - up to 12 times more than the control. Treatment with CS or PS resulted in a concentration-dependent increase of the G2/M cell population of the cell cycle as determined by flow cytometry. G2/M arrest was induced significantly with the highest concentration (4 mg $ml^{-1}$) of PS. RT-PCR was performed to study the correlation between G2/M arrest and transcription of cell cycle control genes. The anti-proliferative activity of CS and PS was accompanied by inhibition of cyclin B1, and Cdc 2 mRNA. Moreover, both CS and PS induced expression of the p53 tumor suppressor gene and the Cdk inhibitor p21. These results suggest that polysaccharides from S. herbacea have anti-cancer activity in human colon cancer cells.

CoMSIA 3D-QSAR Analysis of 3,4-Dihydroquinazoline Derivatives Against Human Colon Cancer HT-29 Cells

  • Kwon, Gi Hyun;Cho, Sehyeon;Lee, Jinsung;Sohn, Joo Mi;Byun, Joon Seok;Lee, Kyung-Tae;Lee, Jae Yeol
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3181-3187
    • /
    • 2014
  • A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human colon cancer HT-29 cell were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, BK10001 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined electrostatic, hydrophobic, and hydrogen-bond acceptor fields ($q^2=0.648$, $r^2=0.882$). This model was validated by an external test set of six compounds giving satisfactory predictive $r^2$ values of 0.879. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human colon cancer.

Monitoring the Change of Protein Expression in Human Colon Cancer Cell SNU-81 treated with the Water-Extract of Coptis japonica (황련 열수추출물을 처치한 인간 대장암 세포 SNU-81에서의 단백질 발현 변화)

  • Yoo, Tae-Mo;Kim, Byung-Soo;Yoo, Byong-Chul;Yoo, Hwa-Seung
    • Journal of Pharmacopuncture
    • /
    • v.12 no.1
    • /
    • pp.5-12
    • /
    • 2009
  • Background : Anticancer effects of herbal medicine have been reported in various types of cancer, but the systematic approaches to explain molecular mechanism(s) are not established yet. Objective : To find the anticancer-effect and mechanism(s) of Water Extract of Coptis japonica (WECJ) colon cancer cell (SNU-81). Methods : We first selected 11 herbals, and anti-cancer effects of water-extracts from those herbals have been tested in human colon cancer cell line, SNU-81. Among the tested herbals, the WECJ significantly reduced proliferation of SNU-81. To establish a basis of understanding for anti-cancer mechanism, whole proteins have been obtained from SNU-81 harvested at 48 and 96 hrs after the treatment of WECJ, protein expression has been profiled by 2DE-based proteomic approach. Results : Various changes of the protein expression have been monitored, and most frequent dysregulation was found in the molecular chaperons including heat shock protein 90-alpha (Hsp90-alpha), 14-3-3 protein epsilon, T-complex protein 1 subunit alpha, protein disulfide-isomerase A3, and calreticulin. Interestingly, proliferation-associated protein 2G4 has been up-regulated, and it suggests the possible effect of Coptis japonica on ErbB3-regulated signal transduction pathway and growth control of human colon cancer cells. Conclusion : Based upon the present findings, the further study will focus on monitoring various cancer survival factors after artificial regulation of the proteins identified, and it would be the basis for the understanding of the Coptis japonica anti-cancer effect(s) at the molecular level.