• Title/Summary/Keyword: Colloidal synthesis

Search Result 96, Processing Time 0.029 seconds

Recent Developments in Synthesis of Colloidal Quantum Dots (콜로이드 양자점 합성의 다양한 연구 개발 동향)

  • Jung, Jae-Yong;Hong, Jong-Pal;Kim, Young-Kuk
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.346-354
    • /
    • 2018
  • Over the last decade, the study of the synthesis of semiconductor colloidal quantum dots has progressed at a tremendous rate. Colloidal quantum dots, which possess unique spectral-luminescent characteristics, are of great interest in the development of novel materials and devices, which are promising for use in various fields. Several studies have been carried out on hot injection synthesis methods. However, these methods have been found to be unsuitable for large-capacity synthesis. Therefore, this review paper introduces synthesis methods other than the hot injection synthesis method, to synthesize quantum dots with excellent optical properties, through continuous synthesis and large capacity synthesis. In addition, examples of the application of synthesized colloid quantum dots in displays, solar cells, and bio industries are provided.

Fabrication and Characterization of Nano-Sized ZnSe Powders by Hydrothermal Process (수열합성법에 의한 Zinc Selenide 나노 분말 합성 및 미세구조 특성 연구)

  • Kim, Mi-So;Hong, Hyun-Seon
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.459-465
    • /
    • 2017
  • Nano-sized Zinc selenide (ZnSe) powder was successfully synthesized using Zn and Se precursors in a hydrothermal process. Temperature for the synthesis was varied from $95^{\circ}C$ to $180^{\circ}C$ to evaluate its influence on the microstructural properties of the synthetic particles. ZnSe powder thus fabricated was characterized using various analytical tools such as SEM, XRD, TEM and UV-Vis methods. Two types of ZnSe particles, that is, the precipitated particle and the colloidal particles, were identified in the analysis. The precipitated particles were around 100 nm in average size, whereas the average size of the colloidal particles was around 20 nm. The precipitated particles made at $150^{\circ}C$ and $180^{\circ}C$ were found to be a single phase of ZnSe; however, an inhomogeneous phase was obtained at the lower synthesis temperature of $95^{\circ}C$, suggesting that the temperature for the synthesis should be over $100^{\circ}C$. The precipitated particles were inactive in the UV-Vis absorption investigation, whereas the colloidal particles showed that absorptions occurred at 380 nm in the UV-Vis spectrum.

Colloidal Synthesis of Octahedral Shaped PbSe Nanocrystals from Lead Oleate and Se : Temperature Effect

  • Gokarna, Anisha;Jun, Ki-Won;Khanna, P.K.;Baeg, Jin-Ook;Seok, Sang-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1803-1806
    • /
    • 2005
  • Formation of octahedral shaped PbSe quantum dots at higher synthesis temperature is being reported in this paper. The synthesis includes the reaction between lead oleate and trioctylphosphine selenide under inert gas conditions to produce PbSe. TEM, SEM, XRD and EDS were used to characterize the samples. The SEM exhibited the formation of spherical shaped nanocrystals at temperature below 140 ${^{\circ}C}$ and octahedral shaped nanoparticles at higher temperatures. Moreover, the TEM also showed the well resolved (111) lattice fringes proving that the nanocrystals were crystalline in nature. Synthesis of highly pure PbSe nanocrystals was another interesting aspect of this research.

Recent Progress in Colloidal Quantum Dot Solar Cells: Novel Strategies in Synthesis and Device Structure (콜로이드 양자점 태양전지의 최근 발전 동향: 양자점 합성과 소자 구조에서의 다양한 접근 방법)

  • Choi, Min-Jae;Jung, Yeon Sik
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.157-167
    • /
    • 2014
  • Colloidal quantum dot (CQD) solar cells have attracted great attention due to their cost-effectiveness and solution-processability, as well as their size-dependent optical and electrical properties. The power conversion efficiency of CQD solar cells has rapidly increased up to ~8.6%, which corresponds to the 3 - 4 fold improvement during the last 3 - 4 years. Up to now, there have been many pioneering results in CQD solar cells. Here, we review the recent progress of CQD solar cells including CQD synthesis strategy and device structure engineering.

Resazurin Redox Reaction Mechanism Using Silver Nanoparticles Synthesized with Monosaccharides and Disaccharides (단당류와 이당류를 환원제로 합성한 은 나노입자의 Resazurin 산화환원반응 메커니즘)

  • Park, Young Joo;Chang, Ji Woong
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.299-304
    • /
    • 2020
  • Nanoparticles play an important role as a catalyst in many chemical syntheses. Colloidal nanoparticles were usually synthesized with reducing, capping, and shape directing agents which induce surface poisoning of catalysts. A new green synthesis for silver nanoparticles was developed by utilizing less additives which could be a hazardous waste. A crystallization technique was employed to reduce the amount of reducing and capping agents during synthesis resulting in less surface poisoning of the nanoparticle. The synthesized Ag nanoparticles using monosaccharides and disaccharides as reducing agents could be used as a catalyst for the redox reaction of resazurin and the mechanism of the reaction using Ag nanoparticles was studied.

Green Synthesis of Colloidal and Nanostructured MnO2 by Solution Plasma Process (용액 플라즈마를 이용한 콜로이드 및 나노 구조 MnO2의 친환경 합성)

  • Hyemin Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.315-322
    • /
    • 2023
  • In the present work, we address the new route for the green synthesis of manganese dioxide (MnO2) by an innovative method named the solution plasma process (SPP). The reaction mechanism of both colloidal and nanostructured MnO2 was investigated. Firstly, colloidal MnO2 was synthesized by plasma discharging in KMnO4 aqueous solution without any additives such as reducing agents, acids, or base chemicals. As a function of the discharge time, the purple color solution of MnO4- (oxidation state +7) was changed to the brown color of MnO2 (oxidation state +4) and then light yellow of Mn2+ (oxidation state +2). Based on the UV-vis analysis we found the optimal discharging time for the synthesis of stable colloidal MnO2 and also reaction mechanism was verified by optical emission spectroscopy (OES) analysis. Secondly, MnO2 nanoparticles were synthesized by SPP with a small amount of reducing sugar. The precipitation of brown color was observed after 8 min of plasma discharge and then completely separated into colorless solution and precipitation. It was confirmed layered type of nanoporous birnessite-MnO2 by X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), and electron microscopes. The most important merits of this approach are environmentally friendly process within a short time compared to the conventional method. Moreover, the morphology and the microstructure could be controllable by discharge conditions for the appropriate potential applications, such as secondary batteries, supercapacitors, adsorbents, and catalysts.

Synthesis of Nano-Colloidal Silica Coated with Silver (은을 코팅한 Nano-Colloidal Silica의 합성)

  • Lee, Joo-Heon;Lim, Yoon-Hee;Ham, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • The self assembled silver process and silver coating process after surface reforming for silica particle, were investigated to coat the silver to colloidal silica. The effects of silver amounts and reductant amounts on silver coating efficiencies were investigated. The silver coating process after surface reforming for silica particle using MPTS (3-Mercaptopropyl trimethoxysilane) and APTS (3-Aminopropyl trimethoxysilane), showed the higher coating efficiency and better antibacterial effect than the self assembled silver process.