Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.9.459

Fabrication and Characterization of Nano-Sized ZnSe Powders by Hydrothermal Process  

Kim, Mi-So (Department of Interdisciplinary ECO Science, Sungshin University)
Hong, Hyun-Seon (Department of Interdisciplinary ECO Science, Sungshin University)
Publication Information
Korean Journal of Materials Research / v.27, no.9, 2017 , pp. 459-465 More about this Journal
Abstract
Nano-sized Zinc selenide (ZnSe) powder was successfully synthesized using Zn and Se precursors in a hydrothermal process. Temperature for the synthesis was varied from $95^{\circ}C$ to $180^{\circ}C$ to evaluate its influence on the microstructural properties of the synthetic particles. ZnSe powder thus fabricated was characterized using various analytical tools such as SEM, XRD, TEM and UV-Vis methods. Two types of ZnSe particles, that is, the precipitated particle and the colloidal particles, were identified in the analysis. The precipitated particles were around 100 nm in average size, whereas the average size of the colloidal particles was around 20 nm. The precipitated particles made at $150^{\circ}C$ and $180^{\circ}C$ were found to be a single phase of ZnSe; however, an inhomogeneous phase was obtained at the lower synthesis temperature of $95^{\circ}C$, suggesting that the temperature for the synthesis should be over $100^{\circ}C$. The precipitated particles were inactive in the UV-Vis absorption investigation, whereas the colloidal particles showed that absorptions occurred at 380 nm in the UV-Vis spectrum.
Keywords
Zinc selenide(ZnSe); nano-particles; colloidal; hydrothermal;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. G. Kim, Ceramist, 16, 42 (2013).
2 H. S. Hong, K. S. Park, C. G. Lee, B. S. Kim, L. S. Kang and Y. H. Jin, J. Korean Powder Metall. Inst., 19, 451 (2012) (in Korean).   DOI
3 D. Sukanya, R. Mahesh, S. J. Sundaram, M. R. J. Delavictoire and P. Sagayaraj, Pharma Chem., 7, 271 (2015).
4 A. Valizadeh, H. Mikaeili, M. Samiei, S. M. Farkhani, N. Zarghami, M. Kouhi, A. Akbarzadeh and S. Davaran, Nanoscale Res. Lett., 7, 480 (2012).   DOI
5 R. Indirajith, M. Rajalakshmi, K. ramamurthi, M. Basheer Ahamed and R. Gopalakrishnan, Ferroelectrics, 467, 13 (2014).   DOI
6 P. Y. Yu, T. S. Jeong and Y. J. Shin, J. Korean Crystal Growth. Cryst. Technol., 9, 107 (1999).
7 J. S. Son and B. Y. Moon, J. Ind. Technol., 3, 189 (2000).
8 H. D. Kim, K. H. Choi and D. Y. Yoon, J. Semiconductor Display Equip. Technol., 7, 19 (2008).
9 A. R. Lee and S. J. Park, Appl. Chem. Eng., 26, 362 (2015).   DOI
10 A. R. Lee, J. H. Kim, I. S. Yoo and S. J. Park, J. Chem. Eng., 22, 328 (2011).
11 G. Xue, W. Chao, N. Lu and S. Xingguang, J. Lumin., 131, 1300 (2011).   DOI
12 B. K. Song, J. H. Heo and C. S. Hwang, Bull. Korean Chem. Soc., 35, 3601 (2014).   DOI
13 K. Senthilkumar, T. Kalaivani, S. Kanagesan and V. Balasubramanian, J. Mater. Sci.: Mater. Electron., 23, 2048 (2012).   DOI
14 Y. Li, Y. Ding, Y. Qian, Y. Zhang and L. Yang, Inorg. Chem., 37, 2844 (1998).   DOI
15 J. Wang and Q. Yang, Cryst. Growth Des., 8, 660 (2008).   DOI
16 X. Liu, J. Ma, P. Peng and W. Zheng, Langmuir, 26, 9968 (2010).   DOI
17 K. Saikia, P. Deb and E. Kalita, Current Appl. Phys., 13, 925 (2013).   DOI
18 C. S. Hwang and I. H. Cho, Bull. Korean Chem. Soc., 26, 1776 (2005).   DOI
19 B. Ghosh and N. Shirahata, Sci. Technol. Adv. Mater., 15, 014207 (2014).   DOI
20 H. S. Kim, C. H. Jin, S. Y. An and C. M. Lee, Bull. Korean Chem. Soc., 33, 398 (2012).   DOI
21 F. Mirnajafizadeh, D. Ramsey, S. McAlpine, F. Wang, P. Reece and J. A. Stride, Mater. Sci. Eng. C, 64, 167 (2016).   DOI
22 J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes and B. S. Santos, Microelectron. J., 40, 641 (2009).   DOI
23 K. L. Mock, L. M. V. Tillekeratne and J. R. Kirchhoff, Inorg. Chem. Commun., 60, 87 (2015).   DOI