Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.4.346

Recent Developments in Synthesis of Colloidal Quantum Dots  

Jung, Jae-Yong (Powder&Ceramics Division, Korea Institute of Materials Science)
Hong, Jong-Pal (Laminar Co. Ltd.)
Kim, Young-Kuk (Powder&Ceramics Division, Korea Institute of Materials Science)
Publication Information
Journal of Powder Materials / v.25, no.4, 2018 , pp. 346-354 More about this Journal
Abstract
Over the last decade, the study of the synthesis of semiconductor colloidal quantum dots has progressed at a tremendous rate. Colloidal quantum dots, which possess unique spectral-luminescent characteristics, are of great interest in the development of novel materials and devices, which are promising for use in various fields. Several studies have been carried out on hot injection synthesis methods. However, these methods have been found to be unsuitable for large-capacity synthesis. Therefore, this review paper introduces synthesis methods other than the hot injection synthesis method, to synthesize quantum dots with excellent optical properties, through continuous synthesis and large capacity synthesis. In addition, examples of the application of synthesized colloid quantum dots in displays, solar cells, and bio industries are provided.
Keywords
Colloidal Quantum dots; Synthesis; Applications; LED; Solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Kwon, K. G. Lee, T. J. Park, H. Kim, T. J. Lee, S. J. Lee and D. Y. Jeon: Small, 8 (2012) 3257.   DOI
2 A. Günther and K. F. Jensen: Lab on a Chip, 6 (2006) 1487.   DOI
3 S. Gomez-de Pedro, C. S. Martínez-Cisneros, M. Puyol and J. Alonso-Chamarro: Lab on a Chip, 12 (2012) 1979.   DOI
4 K. Kim, S. Jeong, J. Y. Woo and C. Han: Nanotechnology, 23 (2012) 065602.   DOI
5 O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik: J. Phys. Chem., 98 (1994) 4966.   DOI
6 S. J. Muller, R. G. Larson and E. S. Shaqfeh: Rheol. Acta, 28 (1989) 499.   DOI
7 R. D. Moser, P. Moin and A. Leonard: J. of Computational Physics, 52 (1983) 524.   DOI
8 P. S. Marcus: J. Fluid Mech., 146 (1984) 45.   DOI
9 B. Eckhardt, S. Grossmann and D. Lohse: J. Fluid Mech., 581 (2007) 221.   DOI
10 T. S. Tran, S. J. Park, S. S. Yoo, T. Lee and T. Kim: RSC Adv., 6 (2016) 12003.   DOI
11 Y. H. Song, S. H. Choi, W. K. Park, J. S. Yoo, S. B. Kwon, B. K. Kang, S. R. Park, Y. S. Seo, W. S. Yang and D. H. Yoon: Sci. Rep., 8 (2018) 2009.   DOI
12 http://www.kims.re.kr/v17/bbx/content.php?co_id=02_02 _02
13 T. Xuan, J. Liu, H. Li, H. Sun, L. Pan, X. Chen and Z. Sun: RSC Adv., 5 (2015) 7673.   DOI
14 R. G. Larson, E. S. Shaqfeh and S. J. Muller: J. Fluid Mech., 218 (1990) 573.   DOI
15 S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. Kwok, C. Wang and W. Y. Teoh: J. Phys. Chem. C, 118 (2014) 16393.   DOI
16 Y. Huang, Y. Lan, Q. Yi, H. Huang, Y. Wang and J. Lu: Chem. Res. Chin. Univ., 32 (2016) 16.   DOI
17 M. R. Hodlur and K. M. Rabinal: Chem. Eng. J., 244 (2014) 82.   DOI
18 Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulovic: Nat. Photonics, 7 (2013) 13.   DOI
19 J. Lim, B. G. Jeong, M. Park, J. K. Kim, J. M. Pietryga, Y. Park, V. I. Klimov, C. Lee, D. C. Lee and W. K. Bae: Adv. Mater., 26 (2014) 8034.   DOI
20 V. K. LaMer and R. H. Dinegar: J. Am. Chem. Soc., 72 (1950) 4847.   DOI
21 I. M. Lifshitz and V. V. Slyozov: J.Phys. Chem. Solids, 19 (1961) 35.   DOI
22 V. K. L. Mer: Ind. Eng. Chem., 44 (1952) 1270.   DOI
23 J. W. Mullin: Crystallization(Ed.), Butterworth-Heinemann (2001) 1.
24 M. Niederberger and H. Colfen: Phys. Chem. Chem. Phys., 8 (2006) 3271.   DOI
25 X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos: Nature, 404 (2000) 59.   DOI
26 V. F. Puntes, D. Zanchet, C. K. Erdonmez, and A. P. Alivisatos: J. Am. Chem. Soc., 124 (2002) 12874.   DOI
27 I. Robinson, S. Zacchini, L. D. Tung, S. Maenosono and N. T. Thanh: Chem. Mater., 21 (2009) 3021.   DOI
28 Z. Tang and N. A. Kotov: Adv Mater., 17 (2005) 951.   DOI
29 C. Wagner: Zeitschrift Fur Elektrochemie, Berichte Der Bunsengesellschaft Fur Physikalische Chemie, 65 (1961) 581.
30 H. Zheng, R. K. Smith, Y. Jun, C. Kisielowski, U. Dahmen and A. P. Alivisatos: Science, 324 (2009) 1309.   DOI
31 I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 128 (2006) 2385.   DOI
32 A. Saha, K. V. Chellappan, K. S. Narayan, J. Ghatak, R. Datta and R. Viswanatha: J. Phys. Chem. Lett., 4 (2013) 3544.   DOI
33 X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang and X. Peng: Nature, 515 (2014) 96.   DOI
34 S. Asokan, K. M. Krueger, V. L. Colvin and M. S. Wong: Small, 3 (2007) 1164.   DOI
35 C. B. Murray, C. R. Kagan and M. G. Bawendi: Annu. Rev. Mater. Sci., 30 (2000) 545.   DOI
36 C. de Mello Donega, P. Liljeroth and D. Vanmaekelbergh: Small, 1 (2005) 1152.   DOI
37 S. G. Kwon and T. Hyeon: Small, 7 (2011) 2685.   DOI
38 Z. A. Peng and X. Peng: J. Am. Chem. Soc., 123 (2001) 1389.   DOI
39 L. Li and P. Reiss: J. Am. Chem. Soc., 130, (2008) 11588.   DOI
40 D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise and W. W. Webb: Science, 300 (2003) 1434.   DOI
41 D. Loss and D. P. DiVincenzo: Phys. Rev. A, 57 (1998) 120.   DOI
42 D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen and P. H. Seeberger: Chem. Commun., (2005) 578.
43 W. Lin, Y. Wang, S. Wang and H. Tseng: Nano Today, 4 (2009) 470.   DOI
44 K. W. Wang, K. G. Lee, T. J. Park, Y. Lee, J. Yang, D. H. Kim, S. J. Lee and J. Y. Park: Biotechnol. Bioeng., 109 (2012) 289.   DOI
45 R. Kikkeri, P. Laurino, A. Odedra and P. H. Seeberger: Angew. Chem. Int. Ed., 49 (2010) 2054.   DOI
46 A. M. Smith and S. Nie: Acc. Chem. Res., 43 (2009) 190.
47 H. Goesmann and C. Feldmann: Angewandte Chemie International Edition, 49 (2010) 1362.   DOI
48 P. Reiss, M. Protiere and L. Li: Small 5 (2009) 154.   DOI
49 J. Y. Kim, O. Voznyy, D. Zhitomirsky and E. H. Sargent: Adv Mater., 25 (2013) 4986.   DOI
50 V. I. Klimov: Nanocrystal Quantum Dots, CRC Press (2010) 1.
51 D. V. Talapin, J. Lee, M. V. Kovalenko and E. V. Shevchenko: Chem. Rev., 110 (2009) 389.
52 S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder and V. I. Klimov: J. Am. Chem. Soc., 129 (2007) 11708.   DOI
53 S. K. Panda, S. G. Hickey, H. V. Demir and A. Eychmuller: Angewandte Chemie, 123 (2011) 4524.   DOI
54 N. Pradhan and X. Peng: J. Am. Chem. Soc., 129 (2007) 3339.   DOI
55 S. M. Hwang, J. B. Lee, S. H. Kim and J. H. Ryu: J. of the Korean Crystal Growth and Crystal Technology, 22 (2012) 233.   DOI
56 I. Robel, V. Subramanian, M. Kuno and P. V. Kamat: J. Am. Chem. Soc., 128 (2006) 2385.   DOI
57 C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath: Science, 277 (1997) 1978.   DOI
58 X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez: Nat. Biotechnol. 21 (2003) 41.   DOI
59 W. Liu, M. Howarth, A. B. Greytak, Y. Zheng, D. G. Nocera, A. Y. Ting and M. G. Bawendi, J. Am. Chem. Soc., 130 (2008) 1274.   DOI
60 H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel and M. K. Nazeeruddin: Nano Letters, 9 (2009) 4221.   DOI