• Title/Summary/Keyword: Collision avoidance

Search Result 829, Processing Time 0.03 seconds

Near-Optimal Collision Avoidance Maneuvers for UAV

  • Han, Su-Cheol;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1999-2004
    • /
    • 2004
  • Collision avoidance for the aircraft can be stated as a problem of maintaining a safe distance between aircrafts in conflict. Optimal collision avoidance problem seeks to minimize the given cost function while simultaneously satisfying the constraints. The cost function can be a function of time or input. This paper addresses the trajectory time-optimization problem for collision avoidance of the unmanned aerial vehicles. The problem is difficult to handle, because it is a two points boundary value problem with dynamic environment. Some simplifying algorithms are used for application in on-line operation. Although there are more complicated problems, by prediction of conflict time and some assumptions, we changed a dynamic environment problem into a static one.

  • PDF

A Study on Performance Comparison of COTS Operating Systems for a Mission Computer Using UAV Collision Avoidance Algorithm (무인기 충돌회피 알고리즘을 이용한 임무컴퓨터용 상용기성품 운영체계 성능 비교에 대한 연구)

  • Yang, Jun-Mo;Jeon, Yu-Ji;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.6-11
    • /
    • 2016
  • There has been an increase in the number of researches on the segment for commercialization after developing avionics systems. In this paper, we have applied a commercial off-the-shelf(COTS) operating systems in an aircraft mission computer. We used UAV collision avoidance algorithms to compare the performance of COTS operating systems. The UAV collision avoidance algorithms were tested on different operating systems to compare the performances of the operating systems. The measured parameters are memory usage and processing time. We have verified that the UAV collision avoidance algorithms worked successfully and compared the performance of each operating system.

Collision Avoidance Using Linear Quadratic Control in Satellite Formation Flying

  • Mok, Sung-Hoon;Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.351-359
    • /
    • 2010
  • This paper proposes a linear system control algorithm with collision avoidance in multiple satellites. Consideration of collision avoidance is augmented by adding a weighting term in the cost function of the original tracking problem in linear quadratic control (LQC). Because the proposed algorithm relies on a similar solution procedure to the original LQC, its inherent advantages, including gain-robustness and optimality, are preserved. To confirm and visualize the derived algorithm, a simple example of two-vehicle motion in the two-dimensional plane is illustrated. In addition, the proposed collision avoidance control is applied to satellite formation flying, and verified by numerical simulations.

Comparison of Collision Avoidance Algorithm for a Mobile Robot using a Simulation (시뮬레이션을 이용한 이동 로봇의 충돌회피 알고리즘 비교)

  • Kim, Kwang-Jin;Ko, Nak-Yong;Park, Se-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.187-194
    • /
    • 2012
  • This paper compares two collision avoidance algorithms using a simulator. The collision avoidance is vital for autonomous navigation of a mobile robot. Artificial potential field method and elastic force method are major approaches for the collision avoidance. The two algorithms are compared in the respect of the time for motion completion and the length of the motion path. The simulator is developed based on IPC(Inter Process Communication) and a differential drive mobile robot is used for the comparison.

A Study on the Influence of Navigational Environment on Mariner's Behavior for Collision Avoidance

  • Park, Jung-Sun;Yea, Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.2
    • /
    • pp.127-132
    • /
    • 2008
  • The safety degree of navigation for collision avoidance is closely related with the combination between mariner's behavior and navigational environment. The condition of navigational environment is mainly decided by navigable waters, ship traffic, rule of road, sea state, weather and so on. Especially, the condition of navigable waters and ship traffic in navigational environment are ones of the important factors to attain safe navigation when mariners are underway and crossing, head on or overtaking situation. Thus this paper is to analyze the characteristics of mariner's behavior for collision avoidance caused by ship traffic and navigable waters by analyzing the contents of questionnaire and the results of international collaborative research. As a result, it can be concluded that the density of ship traffic and the area of navigable waters affect mariner's ship handling for collision avoidance.

A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

  • You, Youngjun;Rhee, Key-Pyo;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.188-198
    • /
    • 2013
  • In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

Collision Avoidance Algorithm of an Intelligent Wheelchair Considering the User's Safety with a Moving Obstacle (탑승자의 안전을 고려한 지능형 휠체어의 단일 이동 장애물 충돌회피 알고리즘)

  • Kim, Yong Hwi;Yoon, Tae Sung;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.936-940
    • /
    • 2013
  • As the ageing population grows around the world, the demand for electric wheelchairs, an important mobility assistance device for the disabled and elderly, is gradually increasing. Therefore, a number of studies related to intelligent wheelchairs are actively underway to improve safety and comfort for wheelchair users. However, previous collision avoidance studies for intelligent wheelchairs have concentrated on collision avoidance methods with the shortest distance and by only changing either velocity or heading angle, rather than considering the forces exerted on the user. If a collision avoidance algorithm that does not consider these forces is applied to an intelligent wheelchair, there is a possibility of an accident due to falling as wheelchair users are generally disabled and elderly people. In this paper, we propose a collision avoidance algorithm which minimizes the forces exerted on a wheelchair user by minimizing the variation of the wheelchair's velocity and heading angle when the sizes, positions, velocities, and heading angles of a wheelchair and a moving obstacle are known.

Self-Collision Detection/Avoidance for a Rescue Robot by Modified Skeleton Algorithm (보완 골격 알고리듬을 이용한 구난로봇의 자체 충돌감지/회피)

  • Lee, Wonsuk;Hong, Seongil;Park, Gyuhyun;Kang, Younsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • This paper handles self-collision avoidance for a rescue robot with redundant manipulators. In order to detect all available self-collisions in advance, minimum distances between arbitrary robot parts should be monitored in real-time. For the minimum distance estimation, we suggest a modified method from a previous skeleton algorithm which has less computation burden and realize collision avoidance based on a potential function using the proposed algorithm. The resultant command by collision avoidance should not disturb a given primary task, so null-space of joint solution from a CLIK is utilized for collision avoidance by a gradient projection method.

Boundary-RRT* Algorithm for Drone Collision Avoidance and Interleaved Path Re-planning

  • Park, Je-Kwan;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1324-1342
    • /
    • 2020
  • Various modified algorithms of rapidly-exploring random tree (RRT) have been previously proposed. However, compared to the RRT algorithm for collision avoidance with global and static obstacles, it is not easy to find a collision avoidance and local path re-planning algorithm for dynamic obstacles based on the RRT algorithm. In this study, we propose boundary-RRT*, a novel-algorithm that can be applied to aerial vehicles for collision avoidance and path re-planning in a three-dimensional environment. The algorithm not only bounds the configuration space, but it also includes an implicit bias for the bounded configuration space. Therefore, it can create a path with a natural curvature without defining a bias function. Furthermore, the exploring space is reduced to a half-torus by combining it with simple right-of-way rules. When defining the distance as a cost, the proposed algorithm through numerical analysis shows that the standard deviation (σ) approaches 0 as the number of samples per unit time increases and the length of epsilon ε (maximum length of an edge in the tree) decreases. This means that a stable waypoint list can be generated using the proposed algorithm. Therefore, by increasing real-time performance through simple calculation and the boundary of the configuration space, the algorithm proved to be suitable for collision avoidance of aerial vehicles and replanning of local paths.

K-Means Clustering Algorithm and CPA based Collinear Multiple Static Obstacle Collision Avoidance for UAVs (K-평균 군집화 알고리즘 및 최근접점 기반 무인항공기용 공선상의 다중 정적 장애물 충돌 회피)

  • Hyeji Kim;Hyeok Kang;Seongbong Lee;Hyeongseok Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.427-433
    • /
    • 2022
  • Obstacle detection, collision recognition, and avoidance technologies are required the collision avoidance technology for UAVs. In this paper, considering collinear multiple static obstacle, we propose an obstacle detection algorithm using LiDAR and a collision recognition and avoidance algorithm based on CPA. Preprocessing is performed to remove the ground from the LiDAR measurement data before obstacle detection. And we detect and classify obstacles in the preprocessed data using the K-means clustering algorithm. Also, we estimate the absolute positions of detected obstacles using relative navigation and correct the estimated positions using a low-pass filter. For collision avoidance with the detected multiple static obstacle, we use a collision recognition and avoidance algorithm based on CPA. Information of obstacles to be avoided is updated using distance between each obstacle, and collision recognition and avoidance are performed through the updated obstacles information. Finally, through obstacle location estimation, collision recognition, and collision avoidance result analysis in the Gazebo simulation environment, we verified that collision avoidance is performed successfully.