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1. INTRODUCTION 

Collision avoidance for the aircraft can be stated as a 

problem of maintaining a safe distance between aircrafts in 

conflict. Optimal collision avoidance problem seeks to 

minimize the given cost function while simultaneously 

satisfying the constraints. The cost function can be a function 

of time or input. 

Many studies have been conducted on UAV, mobile robots 

avoiding obstacles and arriving at destinations safely [1-4]. 

And there is an on-line application and optimal solution in the 

case of non-moving obstacles [3]. 

However, it is a much different problem in the case of a 

moving obstacle. The problem is difficult to handle and it is 

not easy to derive an optimal solution in on-line operation. 

Piorini and Shiller studied optimal trajectory of a mobile 

robot in dynamic environment [4]. They assumed that the 

obstacle moves straight with a constant speed. Also since there 

is no limit on the robot speed, it is difficult to apply this 

method directly to the UAV. Hu, et. al studied collision 

avoidance between aircraft [5]. They did not include the 

aircraft dynamics and treated the problem as finding a middle 

waypoint. 

In this paper, we consider the aircraft dynamics and make 

the performance index as a function of time. A solution to 

minimize the performance index and avoid obstacle 

simultaneously is found. And some simplifying algorithms are 

used in order to be able to apply it to a on-line operation. 

Although there may be more complicated problems by 

prediction of conflict time and some assumptions, we 

transform a dynamic environment problem into static one. 

We derive the analytic solution of the time optimal 

trajectory for static obstacle and calculate the expected 

conflict time and distance for a moving obstacle. Then the 

algorithm for calculation of the desired heading angle for 

collision avoidance maneuver and on-line application 

technique is proposed. Finally simulation study is performed 

for various situations. 

2. ANALYTIC SOLUTION OF TIME OPTIMAL 

TRAJECTORY 

We briefly discuss the optimal trajectory in the static 

environment. We treat a dynamic obstacle which has a certain 

lateral acceleration as a static one by calculating expected 

conflict time and distance by assumptions. 

Let us assume that aircraft is a point mass in 2-dimensional 

environment. Then the aircraft dynamics are described by 
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where ψ is the heading angle of the aircraft, V is the 

velocity, and ,x y  represent 2-dimensional position of the 

aircraft, respectively. 

A performance index is defined as a function of time. 
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where PR is a safe distance, ,x yO O corresponds to the 

position of the obstacle in the x -axis, y -axis respectively, 

u  is the input to the aircraft, and C  is the constant value 

that limits input. 

This problem is an inequality constraint problem, so it can 

be divided into two positions. One is in the feasible region and 

the another is at the boundary region. 

2.1 Feasible region 

For the case of ( , ) 0S x y < , we define the Hamiltonian as 
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Thus, one can see that 

ψ = constant

2.2 Boundary region 

For the case of ( , ) 0S x y =
Since ( , )S x y  has no input term, we differentiate 

( , )S x y  with respect to t  until an expression explicitly 

dependent on input u  is derived, 
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Hamiltonian is 
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then, the solution is 
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differentiate the above equation with respect to time yields 
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with

2 2sin cos 1ψ ψ+ =                          (10) 

substitute Eqs. (8), (10) and dynamic Eq. (1), then 
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substitute Eqs.(1) and (11) into (9), results in 

P

V
R

ψ = ±                                (13) 

From the above solution, one find that the aircraft flies 

straight outside the safety distance, and at the boundary region 

the aircraft flies along the boundary. This is illustrated in 

Fig.1.

Goal

( , )x y

Fig. 1 Time optimal trajectory 

3. EXPECTED CONFLICT TIME AND 

CONFLICT DISTANCE 

3.1 Obstacle moves straight with constant speed 

If an obstacle moves straight with constant speed, the 

solution is obtained easily. The position of the obstacle and the 

aircraft is defined with respect to time as below. 
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The range between the aircraft and the obstacle is given by 
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The expected conflict time is obtained by minimizing the 

range function ( )R t .

Since ( )R t is a monotonic function, we define 

2( ) ( )R t R t′ = . The expected conflict time ct  is the time 

minimizing the range function ( )R t , such that 
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Furthermore, the conflict distance is ( )cR t . If ( )cR t  is 

greater than the safety distance, it is considered as no conflict 

and vice versa. 

3.2 Obstacle has lateral acceleration 

If the obstacle moves with a certain lateral acceleration, the 

problem becomes quite different. 

First, the position of the obstacle is given as, 

2 2

0 0

2 2

0 0

0

( ) sin sin ( )

( ) cos cos ( )

( )

T T
T T T T

T T

T T
T T T T

T T

T
T T

T

V V
x t x t

a a

V V
y t y t

a a

V
t t

a

ψ ψ

ψ ψ

ψ ψ

= + −

= − +

= −

  (18) 

The above function has nonlinear terms. So if we try to 
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minimize 2 2( ) ( ( ) ( )) ( ( ) ( ))I T I TR t x t x t y t y t= − + −  directly 

to obtain the expected conflict time, there may exist many 

local minimums and it is hard to find the true solution. 

Even if the lateral acceleration is constant, the result is 

same. So we propose a different approach to estimate the 

expected conflict time and distance. 

There are two situations between the obstacle and the 

aircraft trajectory. Figures 2 and 3 show the two situations. 

One is when the trajectory of the aircraft crosses the trajectory 

of the obstacle, and the other is when the trajectory of the 

aircraft doesn’t cross. 

Case 1: The trajectory of the aircraft crosses the trajectory of 

the obstacle 

x

Bθ

Aθ

xθ

O

B

A

CO C
mR

T PR R−

Fig. 2 Aircraft penetrates in the turn radius of obstacle 

Case 2: The trajectory of the aircraft doesn’t cross the 

trajectory of the obstacle

Fig. 3 Aircraft flies outside the turn radius of the obstacle 

The second case could be ignored because collision 

situation does not occur. So we consider only the first case. In 

the first case the time region for search is restricted as bold 

lines( A B , C D ). This prevents us from calculating a 

wrong solution. 

Let us calculate , , ,A B C Dt t t t , the time at , , ,A B C D  in 

the Fig. 2. 

The center of the turn circle of an obstacle 
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where TR  is the turn radius of the obstacle, and 
0Tψ  is the 

initial heading angle of the obstacle. 

Using the trajectory function of the aircraft 
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where ,x yv v  represent the velocity of aircraft in the x

and y axis. And the center of the turn circle of an obstacle 

CO  from Eq. (19), we can obtain time mt  which minimizes 

the range between the aircraft and the center of the turn circle 

CO .
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So the minimum range 
mR  between the aircraft and the 

center of the turn circle of the obstacle becomes 

2 2
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From Fig. 2, At  represents the time to A , and Bt the

time to B  are expressed in the form 
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where , ,oA oB oxR R R are given by 

2 2

2 2

2 2

| | ( )

| | ( )

| | | |

oA T p m

oB T P m

ox C m

R O A R R R

R O B R R R

R O x O x R

= − = + −

= − = − −

= − = − −

             (24) 

In the same way, we can obtain ,C Dt t  to ,C D  , 

respectively. However when we reduce the search region, it is 

impossible to obtain a closed-form solution because the 

equation still possesses nonlinear terms. 

3.3 On-line application technique 

Two techniques for on-line application are proposed. First 

one is an obstacle velocity linearization method. It can be 

made possible by assuming that the turn angle of the obstacle 

in the search region is small. Second is a Hybrid gradient 

descent particle swarm optimization(HGPSO) [6]. It is a 

mixed method of the gradient descent and the particle swarm 

optimization method. 
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3.3.1 Obstacle velocity linearization 

The path function of the obstacle is already defined in Eq. 

(18). By rewriting this equation from A  to B , it follows as 
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If ( )T T Aa V t t−  is very small, we can rewrite Eq. (25) as 
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Substituting this equation into Eq. (17), the expected 

conflict time and conflict range could be calculated as follows; 
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From C  to D , the expected conflict time and conflict 

range are computed in an analogous way. 

3.3.2 HGPSO method 

PSO is the optimization method which is inspired by social 

behavior. It finds a solution by parallel search same as 

evolutionary algorithm. However it chooses next generation 

by cooperation method instead of competition [7]. 

Since the problem is only dependent on time, it is not useful 

to find solution by normal PSO algorithm. So in this paper we 

propose a HGPSO algorithm which is PSO mixed with 

gradient method [6]. 

4. NUMERICAL SOLUTION OF TIME OPTIMAL 

TRAJECTORY 

In this section, we propose the algorithm to solve the time 

optimal trajectory problem numerically. 

For this goal, we must calculate the desired heading angle 

in order to obtain the direction of collision avoidance 

maneuver and input lateral acceleration. If there is an obstacle, 

the desired heading angle can be derived using Fig. 4. 
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Fig.4 Calculating desired heading angle 
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Using Eq. (28) the desired heading angle from the present 

angle is given by 
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and
gLθ gRθ  are obtained in the same way. 
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using Eq. (30) 
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Using the above equations, one can evaluate left and right 

maneuvering time from the present position to the goal as 

follows;

_
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From Eq. (32), the maneuvering direction whose time is 
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smaller can be decided. For a static obstacle, the direction of 

the obstacle avoidance maneuver and desired heading angle 

are determined by the above algorithm, but for a dynamic 

obstacle it may not be quite sufficient. Since the obstacle 

moves toward the aircraft performing avoidance maneuver, the 

obstacle region changes during the maneuver. Fig. 5 shows 

this situation and possible solution. 

A

B

C

B
C

A

Fig.5 Calculation of the heading angle about dynamic obstacle 

In the Fig. 5, the position of the obstacle is A, but during the 

left obstacle avoidance maneuver the obstacle moves to B, and 

during right maneuver the obstacle moves to C. So for the 

dynamic obstacle, the region B to C (the grey region) is regard 

as the obstacle. 

In the above algorithm the desired heading angle as in the 

static obstacle case (29) can be constructed. 

5. SIMULATION RESULT 

It is assume that the aircraft and the obstacle are 

two-dimensional point mass objects. The equations of motion 

are simply given in the form. 
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Safety range is 6000ft and initial position of the main 

aircraft is (0,0) and the goal location is (0,60760 ft). The speed 

of aircraft and obstacle is 337 ft/sec. 

The simulation was performed in four cases. First case is 

that obstacle is not moving, second case is obstacle moves 

straight with a constant forward speed. Third case is that 

obstacle moves with a constant lateral acceleration and 

constant forward speed. The last case is obstacle moves with 

changing lateral acceleration and constant forward speed. 

5.1 Collision avoidance maneuver for non-moving obstacle 

Two cases of simulation for static obstacle were examined. 

First case is one obstacle and the second case is 

multi-obstacles case. Figures 6 and 7 shows the simulation 

results.
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Fig.6 One obstacle case 
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Fig.7 Multi-obstacles case 

It can be shown that the aircraft maneuvers as expected, and 

collision avoidance is performed in a satisfactory manner. 

5.2 Collision avoidance maneuver for moving obstacle

For dynamic obstacle case, we assume that obstacle is a 

two-dimensional point mass, and equations of motion are 

already presented in Eq. (33). 

5.2.1 Straight and constant speed obstacle 
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Fig.8 Collision avoidance for straight and constant speed 

obstacle
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5.2.2 Moving obstacle with a constant lateral acceleration
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Fig.9 Collision avoidance for obstacle with constant 

acceleration

5.2.3 Moving obstacle with a random lateral acceleration

In this simulation, the obstacle moves with changing lateral 

acceleration and constant speed. For the simulation, the lateral 

acceleration of the obstacle is settled into a cosine wave. 
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Fig.10 Applied acceleration of obstacle 
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Fig.11 Collision avoidance for obstacle with cosine wave 

acceleration

6. CONCLUSION 

The near-minimum-time optimal collision avoidance for 

UAV was studied. The solution that minimizes the 

performance index and avoids obstacle simultaneously was 

derived. Obstacle velocity linearization and HGPSO are 

proposed for application into on-line operation.  

We derived the analytic solution of the time optimal 

trajectory for static obstacle and calculate the expected 

conflict time and distance for a moving obstacle. The moving 

obstacle was treated as the static one, and the numerical 

solution for collision avoidance for moving obstacle was 

thought. Simulations in the static and dynamic environment 

were conducted. 

While it shows desirable results, there remains more work 

to be done. First, the chattering problem in aircraft input 

should be resolved. And the case of multi-moving-obstacle 

case should be investigated with extension into three 

-dimensional cases. 
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