• Title/Summary/Keyword: Collision Warning

Search Result 127, Processing Time 0.027 seconds

An Application of Computer Vision and Laser Radar to a Collision Warning System (자동차 추돌경보 시스템 개발을 위한 컴퓨터 비젼과 레이저 레이다의 응용)

  • 이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.258-267
    • /
    • 1999
  • An intelligent safety vehicle(ISV) should have an ability to predict the possibility of an accident and help a driver avoid the accident in advance. The basic function of the ISV is to alert the driver by warning when the collision is to occur. For this purpose, the ISV has to function efficiently in sensing the environmental context. While image processing provides lane information, laser radar senses road obstacles including vehicles. By applying a simple clustering algorithm to radar signals, it is possible to obtain the vehicle information. Consequently, we can identify the existence of the vehicle of interest on my lane. The reliability of the sensing algorithm is evaluated by running on the highway with a test vehicle.

  • PDF

Vision-based Real-time Vehicle Detection and Tracking Algorithm for Forward Collision Warning (전방 추돌 경보를 위한 영상 기반 실시간 차량 검출 및 추적 알고리즘)

  • Hong, Sunghoon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.962-970
    • /
    • 2021
  • The cause of the majority of vehicle accidents is a safety issue due to the driver's inattention, such as drowsy driving. A forward collision warning system (FCWS) can significantly reduce the number and severity of accidents by detecting the risk of collision with vehicles in front and providing an advanced warning signal to the driver. This paper describes a low power embedded system based FCWS for safety. The algorithm computes time to collision (TTC) through detection, tracking, distance calculation for the vehicle ahead and current vehicle speed information with a single camera. Additionally, in order to operate in real time even in a low-performance embedded system, an optimization technique in the program with high and low levels will be introduced. The system has been tested through the driving video of the vehicle in the embedded system. As a result of using the optimization technique, the execution time was about 170 times faster than that when using the previous non-optimized process.

Vehicles Auto Collision Detection & Avoidance Protocol

  • Almutairi, Mubarak;Muneer, Kashif;Ur Rehman, Aqeel
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.107-112
    • /
    • 2022
  • The automotive industry is motivated to provide more and more amenities to its customers. The industry is taking advantage of artificial intelligence by increasing different sensors and gadgets in vehicles machoism is forward collision warning, at the same time road accidents are also increasing which is another concern to address. So there is an urgent need to provide an A.I based system to avoid such incidents which can be address by using artificial intelligence and global positioning system. Automotive/smart vehicles protection has become a major study of research for customers, government and also automotive industry engineers In this study a two layered novel hypothetical approach is proposed which include in-time vehicle/obstacle detection with auto warning mechanism for collision detection & avoidance and later in a case of an accident manifestation GPS & video camera based alerts system and interrupt generation to nearby ambulance or rescue-services units for in-time driver rescue.

Development of Predictive Pedestrian Collision Warning Service Considering Pedestrian Characteristics (보행자 특성을 고려한 예측형 보행자 충돌 경고 서비스 개발)

  • Ka, Dongho;Lee, Donghoun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.68-83
    • /
    • 2019
  • The number of pedestrian traffic accident fatalities is three times the number of car accidents in South Korea. Serious accidents are caused especially at intersections when the vehicle turns to their right. Various pedestrian collision warning services have been developed, but they are insufficient to prevent dangerous pedestrians. In this study, P2CWS is developed to warn approaching vehicles based on the pedestrians' characteristics. In order to evaluate the performance of the service, actual pedestrian data were collected at the intersection of Daejeon, and comparative analysis was carried out according to pedestrian characteristics. As a result, the performance analysis showed a higher accordance when the characteristics of the pedestrian is considered. Accordingly, we can conclude that identifying pedestrian characteristics in predicting the pedestrian crossing is important.

The Development of a Collision Warning System for Small-Sized Vessels Using WAVE Communication Technology (WAVE 통신을 이용한 소형선박 충돌경보시스템 개발 연구)

  • Kang, Won-Sik;Kim, Young-Du;Lee, Myoung-Ki;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • Wireless communication technology (WAVE) for vehicles, which is the core technology behind the next-generation intelligent transport system (C-ITS), is used to deliver information about vehicles to prevent traffic accidents and traffic situations that may arise between vehicles and infrastructure. Similar traffic issues often arise in marine scenarios. Currently, AIS is being used as a means of transmitting information such as the status of relative vessels, but research is being carried out to solve problems with AIS such as overloading by applying wireless communication technology for vehicles to the sea. In this study, a collision warning system suitable for small-sized vessels was developed based on the marine application of WAVE for vehicles verified through prior research, and the adequacy of this collision warning system was reviewed through a practical test. It is expected that this system will contribute greatly to future e-Navigation applications or self-driving ships as well as to preventing marine accidents.

An Overheight Warning System for High Height Vehicles (전고가 높은 차량을 위한 통과 높이 경고 시스템)

  • Kim, Tae-Won;Ok, Seung-Ho;Heo, Gyeongyong;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.849-856
    • /
    • 2020
  • Recently, as the number of high-height vehicles such as double-decker buses has increased, collision accidents have occurred in bridges and tunnels due to the deviation from the designated routes and driver's carelessness. In the case of the existing front collision warning system, it is limited to vehicles and pedestrians, so it is difficult to use it as a pass height warning system for the high height vehicles. In this paper, we propose a system that generates a warning by determining the correlation and time series characteristics of data for each segment using multiple lidar sensors and then determining the possibility of collision in the upper part of the vehicle. Also, the proposed system confirmed the proper operation through a real-time driving test and a system performance evaluation by the Korea Automobile Testing & Research Institute.

A Pedestrian Collision Warning System using a Fuzzy Logic (퍼지로직을 이용한 보행자 충돌 경고 시스템)

  • Kim, Yang Ho;Kim, Kwangsoo;Kwak, Sooyeong
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.440-448
    • /
    • 2015
  • A pedestrian collision warning system which makes a judgement of pedestrian's intention to help avoiding hitting accidents is proposed. This system uses the image sequences obtained from a car black box as well as vehicle's speed obtained from a GPS. It detects pedestrians, if any, based on the Histogram of Gradient method and extracts several information such as the pedestrian's relative positions, the direction of motion vectors, and distance between vehicle and pedestrian . A fuzzy logic based on these extracted information is applied to analyze the pedestrian's safety levels. When the safety level is determined to be danger, an alarm is triggered to the driver. The performance of the proposed algorithm is tested under various driving scenarios, which shows it works successfully in real-time.

A Vision-Based Collision Warning System by Surrounding Vehicles Detection

  • Wu, Bing-Fei;Chen, Ying-Han;Kao, Chih-Chun;Li, Yen-Feng;Chen, Chao-Jung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1203-1222
    • /
    • 2012
  • To provide active notification and enhance drivers'awareness of their surroundings, a vision-based collision warning system that detects and monitors surrounding vehicles is proposed in this paper. The main objective is to prevent possible vehicle collisions by monitoring the status of surrounding vehicles, including the distance to the other vehicles in front, behind, to the left and to the right sides. In addition, the proposed system collects and integrates this information to provide advisory warnings to drivers. To offer the correct notification, an algorithm based on features of edge and morphology to detect vehicles is also presented. The proposed system has been implemented in embedded systems and evaluated on real roads in various lighting and weather conditions. The experimental results indicate that the vehicle detection ratios were higher than 97% in the daytime, and appropriate for real road applications.

A Study on the Consumer Insights of Active Safety Features (능동안전장치의 소비자 인식 연구)

  • Sim, Jihwan;Lee, Hwasoo;Yim, Jonghyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.6-10
    • /
    • 2016
  • The objective of this paper is to understand value of active safety features on the customer perspective. In this study, 30 participants who don't have experience with active safety features were recruited and asked for preference, usefulness and consideration of each active safety feature after driving evaluation by them. Through this research, the preference of active safety features were analyzed and which of active safety features were the most useful and the most considered by customer when they purchase new vehicle. As a result, adaptive cruise control and side blind zone alert were the most strongly preferred and considered features by respondents and it means that respondents wanted comfort environment while driving and seemed to value features that compensated for limited visibility. On the other hand, active safety features that warned driver without control of the vehicle was deemed generally less desirable such as lane departure warning and forward collision alert. But autonomous emergency braking was higher than the other active safety features with only warning even if they did not have experience for it while this test. They thought it will be helpful in case of front-end collision situation even they just listened description before the test.

Design of Linear Recursive Target State Estimator for Collision Avoidance System (차량 충돌 방지 시스템을 위한 선형 순환 표적 추정기 설계)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1740-1741
    • /
    • 2011
  • This paper proposes a new linear recursive target state estimator for automotive collision warning system. The target motion is modeled in Cartesian coordinate system while the radar measurements such as range, line-of-sight angle and range rate are obtained in polar coordinate system. To solve the problem by nonlinear relation between these two coordinate system, a practical linear filter design scheme employing the predicted line-of-sight Cartesian coordinate system (PLCCS) is proposed. Especially, PLCCS can effectively incorporate range rate measurements into target tracking system. It is known that the utilization of range rate measurements enables the improvement of target tracking performance. Moreover, PLCCS based target tracking system is implemented by linear recursive filter structure and hence is more suitable scheme for the development of reliable collision warning system. The performance of the proposed method is demonstrated by computer simulations.

  • PDF