• Title/Summary/Keyword: Collision Velocity

Search Result 380, Processing Time 0.025 seconds

Ship Collision Analysis Technique considering Surrounding Water (주변 유체를 고려한 선박 충돌해석 기법 연구)

  • Lee, Sang-Gab;Lee, Jeong-Dae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

Ship Collision Avoidance Support Model in Close Quarters Situation (II) (근접상황 선박충돌회피지원모델에 관한 연구(II))

  • Yang Hyoung-Seon;Yea Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.827-832
    • /
    • 2005
  • In this paper, as a fundamental study of ship collision avoidance supporting system in close quarters situation, we propose ship collision avoidance support model for decreasing ship collision accidents those have occurred due to navigator's unsuitable maneuvering in close encounter. This model will effectively support maneuvering for collision avoidance through displaying the feasible area and the method of collision avoidance using own ship's turning characteristic about action of target ship's keeping course and velocity.

Ship Collision Avoidance Support Model in Close Quarters Situation(II) (근접상황 선박충돌회피지원모델에 관한 연구(II))

  • Yang, Hyoung-Seon;Yea, Byeong-Deok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.119-124
    • /
    • 2005
  • In this paper, as a fundamental study of ship collision avoidance supporting system in close quarters situation, we propose ship collision avoidance support model for decreasing ship collision accidents those have occurred due to navigator's unsuitable maneuvering in close encounter. This model will effectively support maneuvering for collision avoidance through displaying the feasible area and the method of collision avoidance using own ship's turning characteristic about target ship's keeping course and velocity maneuvering actions.

  • PDF

Study on the Travel and Tractive Characteristics of The Two-Wheel Tractor on the General Slope Ground (II)-Dynamic Side-overturn of the Tiller-trailer System- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (II)-동력경운기-트레일러계의 욍골동 및 동횡전도한계)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1978
  • Power tiller is a major unit of agricultural machinery being used on farms in Korea. About 180.000 units are introduced by 1977 and the demand for power tiller is continuously increasing as the farm mechanization progress. Major farming operations done by power tiller are the tillage, pumping, spraying, threshing, and hauling by exchanging the corresponding implements. In addition to their use on a relatively mild slope ground at present, it is also expected that many of power tillers could be operated on much inclined land to be developed by upland enlargement programmed. Therefore, research should be undertaken to solve many problems related to an effective untilization of power tillers on slope ground. The major objective of this study was to find out the travelling and tractive characteristics of power tillers being operated on general slope ground.In order to find out the critical travelling velocity and stability limit of slope ground for the side sliding and the dynamic side overturn of the tiller and tiller-trailer system, the mathematical model was developed based on a simplified physical model. The results analyzed through the model may be summarized as follows; (1) In case of no collision with an obstacle on ground, the equation of the dynamic side overturn developed was: $$\sum_n^{i=1}W_ia_s(cos\alpha cos\phi-{\frac {C_1V^2sin\phi}{gRcos\beta})-I_{AB}\frac {v^2}{Rr}}=0$$ In case of collision with an obstacle on ground, the equation was: $$\sum_n^{i=1}W_ia_s\{cos\alpha(1-sin\phi_1)-{\frac {C_1V^2sin\phi}{gRcos\beta}\}-\frac {1}{2}I_{TP} \( {\frac {2kV_2} {d_1+d_2}\)-I_{AB}{\frac{V^2}{Rr}} \( \frac {\pi}{2}-\frac {\pi}{180}\phi_2 \} = 0 $$ (2) As the angle of steering direction was increased, the critical travelling veloc\ulcornerities of side sliding and dynamic side overturn were decreased. (3) The critical travelling velocity was influenced by both the side slope angle .and the direct angle. In case of no collision with an obstacle, the critical velocity $V_c$ was 2.76-4.83m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ ; and in case of collision with an obstacle, the critical velocity $V_{cc}$ was 1.39-1.5m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ (4) In case of no collision with an obstacle, the dynamic side overturn was stimu\ulcornerlated by the carrying load but in case of collision with an obstacle, the danger of the dynamic side overturn was decreased by the carrying load. (5) When the system travels downward with the first set of high speed the limit {)f slope angle of side sliding was $\beta=5^\circ-10^\circ$ and when travels upward with the first set of high speed, the limit of angle of side sliding was $\beta=10^\circ-17.4^\circ$ (6) In case of running downward with the first set of high speed and collision with an obstacle, the limit of slope angle of the dynamic side overturn was = $12^\circ-17^\circ$ and in case of running upward with the first set of high speed and collision <>f upper wheels with an obstacle, the limit of slope angle of dynamic side overturn collision of upper wheels against an obstacle was $\beta=22^\circ-33^\circ$ at $\alpha=0^\circ -17.4^\circ$, respectively. (7) In case of running up and downward with the first set of high speed and no collision with an obstacle, the limit of slope angle of dynamic side overturn was $\beta=30^\circ-35^\circ$ (8) When the power tiller without implement attached travels up and down on the general slope ground with first set of high speed, the limit of slope angle of dynamic side overturn was $\beta=32^\circ-39^\circ$ in case of no collision with an obstacle, and $\beta=11^\circ-22^\circ$ in case of collision with an obstacle, respectively.

  • PDF

Experimental Study on Response Characteristics of Reinforced Concrete Buildings Due to Waterborne Debris Impact Loads (해일표류물의 충돌에 의한 철근콘크리트 건축물의 응답특성에 관한 실험적 연구)

  • Choi, Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.590-595
    • /
    • 2020
  • In this study, the small-scale collision experiments using a pendulum principle were carried out to evaluate the safety of the reinforced concrete building selected as a tsunami evacuation building due to the collision of the waterborne debris represented by ships. The experimental parameters were set as impact velocity, mass and length of the drifted ship. In this paper, the maximum impact force, impact duration, impact waveform and restitution coefficient affecting building response were investigated in detail. As a result, the impact force waveforms were distributed as a triangle in most of the experimental results, but became closer to a trapezoid as the length of the collision specimen increased. This is the very important result in calculating the momentum (impact waveform area) affecting building response, Furthermore, the restitution coefficients were constant regardless of the impact velocity, but they varied depending on the mass and length of the waterborne debris. However, the restitution coefficient for the mass per unit length of the waterborne debris can be evaluated.

Effects of Droplet Temperature on Heat Transfer During Collision on a Heated Wall Above the Leidenfrost Temperature (Leidenfrost 온도 이상의 가열 벽면과 충돌 시 열전달에 대한 액적 온도의 영향)

  • Park, Junseok;Kim, Hyungdae
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.78-87
    • /
    • 2016
  • This study experimentally investigated the effects of droplet temperature on the heat transfer characteristics during collision of a single droplet on a heated wall above the Leidenfrost temperature. Experiments were performed by varying temperature from 40 to $100^{\circ}C$ while the collision velocity and wall temperature were maintained constant at 0.7 m/s at $500^{\circ}C$, respectively. Evolution of temperature distribution at the droplet-wall interface as well as collision dynamics of the droplet were simultaneously recorded using synchronized high-speed video and infrared cameras. The local heat flux distribution at the collision surface was deduced using the measured temperature distribution data. Various physical parameters, including residence time, local heat flux distribution, heat transfer rate, heat transfer effectiveness and vapor film thickness, were measured from the visualization data. The results showed that increase in droplet temperature reduces the residence time and increases the vapor film thickness. This ultimately results in reduction in the total heat transfer by conduction through the vapor film during droplet-wall collision.

Collision Analysis of Longitudinal Bulkhead of Container/RO-RO Ship with Trailer (컨테이너/로로 선 종격벽의 트레일러 충돌해석)

  • Kang, Myung-Hun;Song, In;Lee, Sang-Kyun;Kim, Sang-Kon;Cho, Sang-Rai
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.13-20
    • /
    • 2013
  • In this paper, a collision accident of a container/Ro-Ro ship was numerically analyzed. A container trailer collided with a longitudinal bulkhead of the ship in the accident, which constituted a longitudinal wall of a heavy fuel oil tank. Due to the accident, the bulkhead plate was ruptured and the heavy fuel oil spilled out of the tank. The detailed information regarding the collision velocity and the mass of the trailer was not provided. Therefore, several collision accident scenarios were constructed based upon the arrangement of the ramp way. Each collision accident scenario was analyzed to predict the extents of damage using a commercial numerical package, ABAQUS. Based on the analysis results it is proposed how to minimize the extents of damage. Through the investigations performed in this study it was found that the understandings of various damages due to collision accidents and the developments of structural design guidance against collision are necessary for the betterment of Container/RO-RO ships' performance.

  • PDF

Local Collision Avoidance of Multiple Robots Using Avoidability Measure and Relative Distance

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.132-144
    • /
    • 2004
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the velocity of the robots. To implement the concept to avoid collision among multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. These repulsive force and attractive force are added to form the driving force for robot motion. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, since the usual potential field method initiates avoidance motion later than the proposed method, it sometimes fails preventing collision or causes hasty motion to avoid other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

A Study on the development of Ship Collision Avoidance Support Program considered Speed (속력을 고려한 선박충돌회피지원 프로그램 개발에 관한 연구)

  • Yang, Hyoung-Seon
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.333-338
    • /
    • 2007
  • In this paper, we have studied the ship collision avoidance support on the basis of 'Ship Collision Avoidance Model considered a Speed' for the purpose of the decrease of the human error, caused ship collisions, at sea and the effective support of avoiding ship collisions. The program has been reflected the speed of a target ship, had not been considered in a preceding study. Besides, the program will effectively support a maneuver for a collision avoidance, through the display of a feasible area and the method of a collision avoidance using the own ship's turning characteristic about the action of target ship's course and velocity.

The Assessment of Structural Crashworthiness in Collision Using Double Skinned Structural Model (이중 선체 선박의 충돌 강도 해석)

  • 이경언;원석희;백점기;이제명;김철홍
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.71-76
    • /
    • 2004
  • To deal with ship collision or grounding, double hull structure has been applied to ships carrying dangerous cargoes. Studies about ability of double hull structure to absorb collision energy and determining fracture state are still under researching. In this study, commercial analysis code, LS-DYNA3D, is used to analyze collision strength of ships in various scenarios. 46K Chemical/Product Carrier is used as analysis subject ship. Study about Energy-Indentation and Force-Indentation is conducted under conditions that weight and collision velocity are changed. Results of this study are very helpful to make mechanism of collision accident clear and to supply useful information about collision strength criteria.

  • PDF