• Title/Summary/Keyword: Collision Speed

Search Result 503, Processing Time 0.025 seconds

A Study on the Techniques to Evaluate Carbody Accelerations after a Train Collision (충돌 후 열차의 차체 가속도 평가 기법 연구)

  • Kim, Joon-Woo;Koo, Jeong-Seo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.477-485
    • /
    • 2010
  • In this study, we suggested several approaches to evaluate the collision acceleration of a carbody under the article 16 of the Korean rolling stock safety regulations. There are various methods to evaluate the rigid body accelerations such as the displacement comparison method by double integration of filtered acceleration data, the velocity comparison method by direct integration of filtered acceleration data, and the analysis method of a velocity-time curve. We compared these methods one another using the 1D dynamic simulation model of Korean high-speed EMU composed of nonlinear springs or bars, dampers, and masses. From the simulation results, the velocity-time curve analysis method and the displacement comparison method are recommended to filter high frequency oscillations and evaluate the maximum and average accelerations of a carbody after a train collision.

Investigation Into Protection Performance of Projectile Using Flying Plate (판재를 이용한 초고속 위협체의 방호성능에 대한 해석적 연구)

  • Choi, Hyoseong;Shin, Hyunho;Yoo, Yo-Han;Park, Jahng Hyon;Kim, Jong-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.1039-1045
    • /
    • 2016
  • We investigated the protection capability of a plate against high speed projectiles demonstrating collision and penetration behaviors by finite element analysis. The element erosion method was used for penetration analysis, which showed that the speed of the projectile was slightly reduced by the collision with the protection plate. Protection capability was measured by the projectile's attitude angle change because the damage of our tanks by projectiles was also dependent on the projectile-tank collision angle. When the length of the protection plate was sufficiently long, the projectile was severely deformed and incapacitated. In the case of a small plate, the projectile was deformed only in the collision region. Thus, projection capability was investigated by the change of attitude angle. The effect of collision angle, velocity, and length of the plate on the rotational and vertical velocities of the projectile was investigated.

Development of FE Models of the Heavy Obstacle for the EU-TSI and Domestic Rolling Stock Safety Regulations and Application to Collision Evaluation of the Korean High-speed EMU (EU의 TSI 규정 및 국내 철도차량안전기준의 대형장애물 유한요소모델 개발과 분산형 고속열차의 충돌성능평가에 적용)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • The purpose of this paper is to develop two kinds of finite element models for the heavy deformable obstacle defined in grade crossing collision scenario of the Europe TSI and the Korean rolling stock safety regulations and to apply the crashworthiness evaluation for the Korean high-speed EMU with the FE model. The numerical models of the heavy obstacle were changed from a past rigid one to a current deformable one whose stiffness requirement should be verified by a collision simulation defined in the regulations. Through several trial simulations, two types of numerical models for the heavy obstacle were developed, which satisfied physical properties specifies in the regulations. One is a solid-type obstacle with uniform density and the other is a shell-type. With the obstacles developed in this study, the grade crossing collision scenario for Korean high-speed EMU was simulated and evaluated for the two-type obstacle models. From the simulation results, the shell and solid-type obstacles showed quite different behaviors after collision, and the shell type model gave more severe results.

Crashworthy Safety Assessment of High Speed Passenger Ship with Underwater Floating Matter (쾌속여객선의 수중부유물과의 내충돌 안전성 평가)

  • Lee, Sang-Gab;Lee, Jae-Seok;Baek, Yun-Hwa;Jun, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.30-31
    • /
    • 2009
  • Through the full scale ship collision response analysis of high speed passenger ship with underwater floating matters, the objective of this study is to perform the crashworthy safety assessment of its hull and passengers. For this safety assessment, diverse collision scenarios could be established through the thorough understanding of damage mechanisms due to the collision of its hydrofoil system with underwater floating matter examining the damage informations of its hull and passengers from the collision accidents, and through the estimation of the damages of its hull and passenger. The next step, crashworthy safety assessment of its hull and passengers, was carried out by the collision response analyses of high speed passenger ship with underwater floating matter using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code in consideration of surrounding water, and using local zooming analysis technique.

  • PDF

A Study on the Correlation between Effective Impact Speed and the Severity of Collision Accidents with Fishing Vessels (유효충돌속도에 따른 어선 충돌사고 피해 상관성에 관한 연구)

  • Hyungoo Park;Young-Soo Park;Sang-Won Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.202-211
    • /
    • 2023
  • In maritime accidents, collisions involving fishing vessels are more frequent and severe than those involving other types of vessels. Previous cases of collision accidents caused by fishing vessels causing serious damage implied that fishing vessels maintained high speeds until just before the collision and that they collided with much larger vessels. This study investigated the correlation between the severity of ship damage resulting from fishing vessel collisions and the vessel's speed. The effective impact speed commonly used in the road transport sector was utilized to analyze ship collision accidents. The study collected collision data between fishing vessels and between fishing vessels and non-fishing vessels from accident investigation reports from 2016 to 2022. The effective impact speed was calculated for a total of 617 vessels. After using binary and multinomial logistic regression methodology, the analysis was carried out with effective impact speed as the independent variable and severity of accident as the dependent variable. The analysis revealed a statistically significant correlation between the effective impact speed and the severity of ship damage, indicating that the severity of ship damage is influenced not only by the effective impact speed but also by the tonnage of the vessel.

Anti-Collision Algorithm for High-Speed Tags in Active RFID System (RFID 시스템 인식속도 개선을 위한 충돌방지 알고리즘)

  • Kim, Ik-Soon;Kim, Chun-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1891-1904
    • /
    • 2013
  • In RFID System, one of the problem that we must slove is to devise a good anti-collision algorithms to improve the efficiency of tag identification which is usually low because of tag collision. Among of the existing RFID anti-collision algorithm, BS (Binary Search) algorithm, though simple, has a disadvantage that the stage 0f times used to identify the tags increase exponentially as the number of tags does. In this Paper, I propose a new anti-collision algorithm called Multi-collision reflected frame which restricts the number of stages and decided bit. Since the proposal algorithm keep the length size of UID and density of total tag when have 100%.

An Analytical Approach to Collision Avoidance between Two Encountering Ships (교항하는 두 선박간의 충돌회피에 관한 해석적 접근)

  • Park, Jeong-Hong;Kim, Jin-Whan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.21-22
    • /
    • 2011
  • In this study, an analytical algorithm for collision avoidance is proposed, which is applicable to designing collision avoidance maneuvers for two encountering ships. The minimum separation distance is defined and an appropriate maneuver sequence is computed for safe and effective collision avoidance. Two approaches: 1) collision avoidance through speed change and 2) collision avoidance through heading change, are considered, and the initiation point of the avoidance maneuver is computed analytically using the geometric configuration of the two encountering ships. To verify the feasibility of the proposed algorithm, numerical simulations are carried out using a set of ship-to-ship encountering scenarios.

  • PDF

Maritime Officers' Strategies for Collision Avoidance in Crossing Situations

  • Hong, Seung Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.525-533
    • /
    • 2017
  • Objective: The aim of this study is to investigate maritime officers' strategies to avoid the ship collision in crossing situations. Background: In a situation where there is a risk of collision between two ships, maritime officers can change the direction and speed of the own-ship to avoid the collision. They have four options to select; adjusting the speed only, the direction only, both the speed and direction at the same time and no action. Research questions were whether the strategy they are using differs according to the shipboard experience of maritime officers and the representation method of ARPA (automatic radar plotting aid) - radar graphic information. Method: Participants were 12. Six of them had more than 3 years of onboard experience, while the others were 4th grade students at Korea Maritime and Ocean University. For each participant, 32 ship encounter situations were provided with ARPA-radar information. 16 situations were presented by the north-up display and 16 situations were presented by the track-up display. Participants were asked to decide how to move the own-ship to avoid the ship collision for each case. Results: Most participants attempted to avoid the collision by adjusting the direction of the ship, representing an average of 22.4 times in 32 judgment trials (about 70%). Participants who did not have experience on board were more likely to control speed and direction at the same time than participants with onboard experience. Participants with onboard experience were more likely to control the direction of the ship only. On the other hand, although the same ARPA Information was provided to the participants, the participants in many cases made different judgments depending on the method of information representation; track-up display and north-up display. It was only 25% that the participants made the same judgment under the same collision situations. Participants with onboard experience did make the same judgment more than participants with no onboard experience. Conclusion: In marine collision situations, maritime officers tend to avoid collisions by adjusting only the direction of their ships, and this tendency is more pronounced among maritime officers with onboard experience. The effect of the method of information representation on their judgment was not significant. Application: The results of this research might help to train maritime officers for safe navigation and to design a collision avoidance support system.

Collision Avoidance Maneuver Simulation of Tilt Rotor Unmanned Aerial Vehicle (틸트로터 무인기의 충돌회피기동 모사)

  • Hwang, Soo-Jung;Lee, Myeong-Kyu;Oh, Soo-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.33-45
    • /
    • 2007
  • The collision avoidance maneuver flight simulation for tilt rotor unmanned aerial vehicle was performed by time-accurate numerical integration method based on wind tunnel test data. Five representative collision avoidance maneuvers were simulated under constraints of aerodynamic stall, propulsion power, structural load, and control actuator capability. The collision avoidance performances of the maneuvers were compared by the computed collision avoidance times. The sensitivities of initial flight speed and collision zone shape on the collision avoidance time were investigated. From these results, it was found that the moderate pull-up turn maneuver defined using moderate pitch and maximum roll controls within simulation constraints is the most robust and efficient collision avoidance maneuver under the various flight speeds and collision object shapes in the tilt rotor UAV applications.

  • PDF

Fragility Assessment of Offshore Wind Turbine by Ship Collision (선박충돌에 의한 해상풍력발전기의 취약도 평가)

  • Cho, Byung Il;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.236-243
    • /
    • 2013
  • Offshore wind turbines has to be proved against accidental events such as ship collision. In this study, ship collision fragility analysis of offshore wind turbine is done. Dynamic collision analysis is accomplished by considering soil foundation interaction and fluid structure interaction. Uncertainties due to ship weight and speed, angle are also considered. By analyzing dynamic response of offshore wind turbine, fragility curves are obtained for different damage levels. They can be used for restricting boat speed around the wind turbine and allowable size of the boat for inspection and for other purposes. Results of the fragility, it was confirmed fragility of collision speed of bulk ship of 30,000DWT and 850ton barge ship.