• 제목/요약/키워드: Collision Impact

Search Result 424, Processing Time 0.035 seconds

Characteristics of the Human Strength Acting on the Lightweight Wall of Buildings (인간이 경량벽체에 가하는 수평하중의 크기에 관한 연구)

  • Choi, Soo-Kyung;Roh, Yong-Woon;Kim, Sang-Heon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.473-481
    • /
    • 2015
  • The purpose of this research is to comprehend experimentally the characteristics of human strength for using as the basic data of impact resistance test method of lightweight wall. Human motions exerting static load are classified to 4 types. Pushes with two hands or shoulder are defined as the instantaneously forcing motions with hands or shoulder put on the force plate. Leanings back or one-hand against the wall are defined as motions of taking a rest in their respective comfortable posture. Human motions exerting dynamic load are classified to 3 types. Selecting 3 levels of motion strength (weak, middle, strong), 3 levels of force plate stiffness (A: 20kN/cm, B: 4.7kN/cm, C: 2.2kN/cm), and 30 male subjects, load was measured when they applied strength to the force plate. Results of this research are as follows: (1) The maximum load ratio (Pmax/W) of static load for each motion was 1.17-1.25 in two hands pushing, 0.95-0.99 in shoulder pushing, 0.16-0.18 in back leaning, and 0.12-0.15 in one hand leaning. (2) Human dynamic load and object collision were different in the load characteristics. (3) The maximum load ratio of dynamic load for each motion was 10.07 in heel kick, 4.46 in shoulder hitting, and 5.58 in fist blow.

Collision Analysis of STF Impregnated Kevlar Fabric Using the 3D-Shell Element (쉘요소를 활용한 STF 함침된 Kevlar Fabric의 방탄해석)

  • Lee, Duk-Gyu;Park, Jong-Kyu;Jung, Wui-Kyung;Lee, Man-Young;Kim, See-Jo;Moon, Sang-Ho;Son, Kwon-Joong;Cho, Hee-Keun
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.24-32
    • /
    • 2016
  • Ballistic impact analyses have been performed with the Kevlar fabric impregnated with STF(shear thickening fluid). Multi-layer laminates modeled with 3D isoparametric shell elements were used for the performance analysis and their results are compared with experimental results. Both experiments and numerical analyses have been done to verify the usefulness of STF to enhance the impact resistance performance. The results showed that STF increases friction within a bundle of fiber, and this phenomena is more apparent in the velocity range of under near 450 m/s. In this research, it is emphasized that FEA analyses of STF impregnated Kevlar fabric laminate were successfully conducted using shell elements. Moreover, the effectiveness of the technique and accuracy were verified through the comparison with reliable experimental data.

Crashworthiness Analysis and Shape Design Optimization of Thin-walled Corrugated Tubes under Axial Impact (축 방향 충격을 받는 박판 파형관의 충돌안전도 해석 및 형상 최적설계)

  • Ahn, Seung Ho;Jung, Hyun Seung;Kim, Jin Sung;Son, Seung Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.128-135
    • /
    • 2021
  • Thin-walled tubes have been widely used as energy absorbing devices because they are light and have high energy-absorption efficiency. However, the downside is that conventional thin-walled tubes usually exhibit an excessive initial peak crushing force (IPCF) and a large fluctuation in the load-displacement curve, and thus lack stability as energy absorbing devices. Corrugated tubes were introduced to reduce IPCF and to increase the stability of collision energy-absorbing devices. Since the performance of corrugated tubes is highly influence by geometry, design optimization methods can be utilized to optimize the performance of corrugated tubes. In this paper, we utilize shape design optimization based on an adaptive surrogate model for crashworthiness analysis. The amplitude and wavelength of the corrugation, as well as curvature changes in the features, are the design variables. A morphing methodology is adopted to perform shape design parameterization. Through numerical examples, we compare optimal design results based on the adaptive surrogate model, with optimal results based on conventional surrogate models, and we show that direct optimal design methods produce more efficient results.

Study on Changes in Vessel Traffic Services Due to Introduction of Maritime Autonomous Surface Ships (자율운항선박 도입에 따른 선박교통관제 업무 변화에 관한 연구)

  • Dae-won Kim;Myeong-ki Lee;Sang-won Park;Young-soo Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.430-436
    • /
    • 2023
  • Study on Changes in Vessel Traffic Services Due to Introduction of Maritime Autonomous Surface ShipsThe development of technologies related to Maritime Autonomous Surface Ships (MASS) has been actively progressing since the mid-2010s, focusing on themes such as collision avoidance, route planning, digital twin, and communication technologies. On the other hand, research on land-based infrastructure connected with MASS, such as logistics systems, port facilities, and vessel traffic services, has relatively received less attention. This study analyzed impact of emergence of MASS on existing vessel traffic service operations and proposed changes in control operations to prepare for its impact. To do this, current vessel traffic service operations were analyzed and elements of MASS technology that could affect vessel traffic control were identified. A survey was conducted among vessel traffic controllers to identify items related to the control of MASS. Results analyzed using the AHP method showed that preparation for emergency response and communication methods with MASS were the most important. Based on this, we were able to derive detailed plans for basic MASS control procedures and emergency response procedures based on data communication within maritime traffic control areas. MASS control procedures proposed in this study are expected to be used as a solution to resolve issues related to traffic safety of MASS in coastal areas.

The dosimetric impact on treatment planning of the Dynamic MLC leaf gap (동적 다엽콜리메이터의 Leaf gap이 전산화 치료계획에 미치는 영향)

  • Kim, Chong Mi;Yun, In Ha;Hong, Dong Gi;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.233-238
    • /
    • 2014
  • Purpose : The Varian's Eclipse radiation treatment planning system is able to correct radiation treatment thought leaf gap which is limitation MLC movement for collision with both MLC. In this study, I'm try to analyze dosimetric effect about the leaf gap in treatment planning system. And then apply to clinical implement. Materials and Methods : The Elclipse version is 10.0. In general, the leaf gap set to 0.05~0.3 mm and must measurement each leaf gap. The leaf gap measured by each LINACs and photons. We applied to measured each leaf gap in IMRT and VMAT. Changing the leaf gap, we evaluated treatment plans by Dmax, CI, etc. Results : When the same plan was evaluated with changing the leaf gap, an increase of 2-5% over the value Dmax, CI increases mm to 0.0~0.50 mm leaf gap. Volumetric modulated and intensity modulated radiation therapy plans all showed the same trend was not found significant between each radiation treatment planning. Conclusion : Generally, the leaf gap setting has a unique measure of the Multileaf collimator. However, the aging of the Multileaf collimator, calibration, and can be changed, after inspection and repair of the lip gap should eventually because these values affect the treatment plan must be applied to the treatment after confirmation. In some cases, may be to maintain the initial setting value of the lip gap, which is undesirable because it can override the influence on the treatment plan.

A Study on Variable Speed Limit Considering Wind Resistance on Off-Shore Bridge (해상교량의 풍하중을 고려한 제한 속도 도출 방안)

  • Lee, Seon-Ha;Kang, Hee-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.75-87
    • /
    • 2004
  • Along the seashore regions in Korea, though strong winds with very large strength are frequently witnessed, no system which can provide appropriate speed information for driving vehicle has been introduced. The driving against strong winds could be very dangerous because of the high possibility of accidents such as rollover and collision. These accidents usually resulted from driver's forced driving try even in difficult situation for steering vehicle, and sometimes overspeed without consideration of wind impact to the vehicles. To reduce accident caused by strong winds, it is important to inform drivers of appropriate driving speeds by perceiving strong winds. By setting up WIS at the main points where strong winds frequently appear and using the variable message sign(VMS) connected to the on-line whether information system, it tis possible to provide desired speed information, which can maintain vehicles' tractive force and maximum running resistance. The case study is conducted on the case of Mokpo-Big-Bridge, which is under construction at Mokpo city. The result show that in case the annual average direction of wind is South and the wind speed is over 8m/hr, the desired speed, which is required in order for vehicles running to South direction to maintain the marginal driving power, is 60km/hr. In addition, for the case of a typhoon such as Memi generated in 2003 year, if wind speed had been 18m/sec in Mokpo city at that time, the running resistance at the speed of 40km/hr is calculated as 1131N. This resistance can not be overcome at the 4th gear(1054N) level, therefore, the gear of vehicles should be reduced down to the 3rd level. In this case, the appropriate speed is 40km/h, and at this point the biggest difference between running resistance and tractive force is generated.

A Study on the Prevention Measures against Fire and Explosion Accidents during Splash Filling in Batch Process (회분식 공정에서 스플래쉬 필링(Splash Filling) 작업으로 인한 화재·폭발 사고 예방대책에 관한 연구)

  • Kim, Sang Ryung;Lee, Dae Jun;Kim, Jung Duk;Kim, Sang Gil;Yang, Won Baek;Rhim, Jong Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.33-39
    • /
    • 2020
  • In general, in a batch reaction process in which products are made using flammable liquids, splash filling is used to clean the walls of the reactor by spraying flammable liquids, which are raw materials used for product, during cleaning of the reactor after work. During this process, mist of flammable liquid is generated, the lower limit of explosion is lowered, and fire·explosion may occur due to discharges caused by various types of complex charges, such as flow charge, collision charge, and ejection charge. Therefore, based on the recent accident case, to identify the risk when working in the form of splash filling with toluene in a batch process and perform an explosion impact analysis using the TNT equivalent method After that, we will analyze the accident results and suggest preventive measures such as constant purge system, improvement of cleaning method, and use of tantalum to prevent such accident.

Breakdown Characteristics of Teflon by N2-O2 Mixture gas (N2-O2 혼합가스에 따른 Teflon의 절연파괴특성)

  • Choi, Eun-Hyeok;Choi, Byoung-Sook;Park, Sung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.69-74
    • /
    • 2018
  • With the increasing development of industrial society and the availability of high quality electrical energy, the simplification of operation and maintenance procedures is required, in order to ensure the reliability and safety of electrical systems. In this paper, the dielectric breakdown characteristics of $N_2-O_2$ mixed gas solid insulation, which is used as an alternative to SF6 in various electric power facilities, are verified. When the gas mixture has a composition ratio similar to that of the atmosphere, the dielectric breakdown characteristics are relatively stabilized. It was confirmed that the breakdown voltage of the gas in the electrode near an equal electric field increased with increasing pressure according to Paschen's rule. The breakdown voltage of the surface increased linearly with increasing pressure, and the difference was caused by the mixing ratio of $O_2$ gas. This change in the surface insulation breakdown voltage was caused by the influence of the electrically negative $O_2$ gas and the intermolecular collision distance. In this study, the influence of the intermolecular impact distance was larger (than that in the absence of the electrically negative $O_2$ gas). The breakdown voltage relation applicable to Teflon according to the surface insulation characteristics was calculated. The characteristics of the surface insulation properties of Teflon, which is used as a solid insulation material, were derived as a function of pressure. It is thought that these results can be used as the basic data for the insulation design of electric power facilities.

The Effect of Barrel Vibration Intensity to the Plating Thickness Distribution

  • Lee, Jun-Ho;Roselle D. Llido
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.15-15
    • /
    • 1999
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the conventional rotating barrel. vibrational barrel (vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components, The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed that the average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value, Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components, However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. $2HD{\;}+{\;}e{\;}{\rightarrow}20H{\;}+{\;}H_2$ Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure thereby resulting to bad plating condition. 1 lot of chip was divided into two equal partion. Each portion was loaded to the same barrel one after the other. Nickel plating and tin-lead plating was performed in the same station. Portion A maintained the normal barrel vibration intensity and portion B vibration intensity was increased two steps higher. All other parameters, current, solution condition were maintained constant. Generally, plating method find procedures were carried out in a best way to maintained the best plating condition. After plating, samples were taken out from each portion. molded and polished. Plating thickness was investigated for both. To check consistency of results. 2nd trial was done now using different lot of another characteristics.

  • PDF

이온산란분광법을 이용한 Si(113)의 표면 구조 변화 관찰

  • 조영준;최재운;강희재
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.148-148
    • /
    • 2000
  • 지금까지 반도체 표면에 대한 연구는 주로 (1000, (111) 표면 등 낮은 밀러 지표를 가진 표면에 대해 이루어져 왔다. 이에 반해 밀러 지표가 높은 Si 면은 불안정하고, 가열하면 다른 표면, 즉 지표가 낮은 면으로 재배열하는 경향이 있는 것으로 알려져 있는데 아직 이들 높은 밀러 지표를 가진 표면에 대한 연구는 미미한 상태이다. 그러나, Si(113)면은 밀러 지표가 높으면서도 안정하기 때문에 Si(113)의 구조를 정확하게 알 수 있다면 밀러 지표가 낮은 Si 표면이 안정한 이유를 이해할 수 있을 것이다. 따라서 본 연구에서는 TOF-CAICISS 장치(Time of Flight - CoAxial Impact Collision Ion Scattering Spectroscopy) 장비와 RHEED(Reflection High Energy Electron Diffrction)를 이용하여 Si(113) 표면의 구조와 Si(113) 표면의 온도에 따른 구조 변화를 관찰하였다. TOF-CAICISS 실험결과를 보면 (3$\times$2)에서 (3$\times$1)으로 상변환하면서 Si(113) 표면에 오각형을 이루는 dimer 원자들과 adatom 원자들간의 높이차가 작아짐을 알 수 있다. RHEED 실험결과와 전산 모사 결과로부터 상온에서 Si(113)(3$\times$2) 구조를 가지다가 45$0^{\circ}C$~50$0^{\circ}C$에서 Si(113) (3$\times$1) 구조로 상변환한다는 것을 알 수 있다. 그러나, 아직 상전이 메카니즘은 명확하게 밝혀지지 않았다. 실험결과를 전산 모사와 비교함으로써 Si(113) 표면에 [33]방향으로 이온빔을 입사시켰을 경우 dabrowski 모델과 Ranke AI 모델이 적합하지 않다는 것을 알 수 있다./TEX>, shower head의 온도는 $65^{\circ}C$로 설정하였다. 증착된 Cu 박막은 SEM, XRD, AFM를 통해 제작된 박막의 특성을 비교.분석하였다. 초기 plasma 처리를 한 경우에는 그림 1에서와 같이 현저히 증가한 초기 구리 입자들이 관측되었으며, 이는 도상 표면에 활성화된 catalytic site의 증가에 기인한다고 보여진다. 이러한 특성은 Cu films의 성장률을 향상시키고, 또한 voids를 줄여 전기적 성질 및 surface morphology를 향상시키는 것으로 나타났다. 결과 필름의 잔류 응력과 biaxial elastic modulus는 필름의 두께가 감소함에 따라 감소하는 경향을 나타냈으며, 같은 두께의 필름인 경우, 식각 깊이에 따른 biaxial elastic modulus 의 변화를 통해 최적의 식각 깊이를 알 수 있었다.도의 값을 나타내었으며 X-선 회절 data로부터 분석한 박막의 변형은 증온도에 따라 7.2%에서 0.04%로 감소하였고 이 이경향은 유전손실은 감소경향과 일치하였다.는 현저하게 향상되었다. 그 원인은 SB power의 인가에 의해 활성화된 precursor 분자들이 큰 에너지를 가지고 기판에 유입되어 치밀한 박막이 형성되었기 때문으로 사료된다.을수 있었다.보았다.다.다양한 기능을 가진 신소재 제조에 있다. 또한 경제적인 측면에서도 고부가 가치의 제품 개발에 따른 새로운 수요 창출과 수익률 향상, 기존의 기능성 안료를 나노(nano)화하여 나노 입자를 제조, 기존의 기능성 안료에 대한 비용 절감 효과등을 유도 할 수 있다. 역시 기술적인 측면에서도 특수소재 개발에 있어 최적의 나노 입자 제어기술 개발 및 나노입자를 기능성 소재로 사용하여 새로운 제품의 제조와 고압 기상 분사기술의 최적화에 의한 기능성 나노 입자 제조 기술을 확립하고 2차 오염 발생원인 유기계 항균제를 무기계 항균제로 대체할 수 있다.

  • PDF