• 제목/요약/키워드: Collision Energy

검색결과 618건 처리시간 0.03초

선수부 설계시 구조거동과 충돌격벽에 미치는 영향 (Collision Response of Bow Structure and Its Affected Collision Bulkhead in Bow Design)

  • 신영식;박명규
    • 한국항만학회지
    • /
    • 제14권2호
    • /
    • pp.219-231
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effects of energy translation to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against head on collision. In the present the bow structure is normally designed in consideration of its specific structural arrangements and internal and external loads in these area such as hydrostatic and dynamic pressure, wave impact and bottom slamming in accordance with the Classification rules, and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits, and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

파일지지 구조물의 선박 충돌거동에 대한 해석 (Analysis of Ship Collision Behavior of Pile Supported Structure)

  • 배용귀;이성로
    • 대한토목학회논문집
    • /
    • 제28권3A호
    • /
    • pp.323-330
    • /
    • 2008
  • 선박과 방호구조물 충돌시 구조물의 동적 특성들을 분석하기 위하여 항로상에 위치한 교량의 방호구조물인 강관파일그룹에 대한 선박충돌해석을 수행하였다. 해석은 선박과 파일의 유한요소 모델링, 비선형성 재료의 모델링, 강성충돌해석, 변위기반해석 그리고 충돌시나리오에 대한 연성충돌해석 등을 포함하고 있다. 강체벽에 대한 강성충돌해석을 통하여, 선수부의 충돌유형에 따른 충돌하중을 산정하였다. 변위기반 해석에서 방호시스템이 최대 수평 이격거리 내에서 흡수할 수 있는 대략적인 에너지의 범위를 산정할 수 있었다. 충돌시나리오별 연성충돌해석에서는 충돌시 거동을 방호시스템 설계를 고려하면서 검토하였다. 파일지지구조물의 에너지소산 메카니즘 분석을 통해 방호구조물의 최적 설계를 도출할 수 있다.

Investigation of ship collision with floating pier structures

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid
    • Coupled systems mechanics
    • /
    • 제3권3호
    • /
    • pp.319-327
    • /
    • 2014
  • This study investigated the collision of ships withfloating pier structures. The nature of the collision phenomenon is complex, and the understanding of it has developed through the modelling of offshore structures. ABAQUS software was used to investigate the collision phenomenon. The interaction between the ship and structural system was modelled, and the stress distribution both at thetime of collision and afterwardswasobserved and modelled. The strain energy absorption by different structural partswas calculated and comparisonswere made.

Investigation of ship collision with floating pier structures

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid
    • Interaction and multiscale mechanics
    • /
    • 제7권1호
    • /
    • pp.563-571
    • /
    • 2014
  • This study investigated the collision of ships withfloating pier structures. The nature of the collision phenomenon is complex, and the understanding of it has developed through the modelling of offshore structures. ABAQUS software was used to investigate the collision phenomenon. The interaction between the ship and structural system was modelled, and the stress distribution both at thetime of collision and afterwardswasobserved and modelled. The strain energy absorption by different structural partswas calculated and comparisonswere made.

선수 충돌시 구조 붕괴 거동에 대한 수치해석(제1보) (Numerical Simulation of Structural Response in Bow Collision (1st Report))

  • 박명규
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.28-35
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy transmission to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against heat on collision. At present the bow structure is normally designed in consideration of its specific structural arrangement and internal and external loads in these areas such as hydrostatic and dynamic pressure wave impact and bottom slamming in accordance with the Classification rules and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

대형 해상풍력발전기 설치 선박(WTIV) Leg구조의 충돌 강도평가 (Estimation of Leg Collision Strength for Large Wind Turbine Installation Vessel (WTIV))

  • 박주신;마국열;서정관
    • 해양환경안전학회지
    • /
    • 제26권5호
    • /
    • pp.551-560
    • /
    • 2020
  • 최근 해상풍력발전기 시장은 에너지 수요 증가, 화석 연료 기반 발전에 대한 의존도 감소와 환경 규제로 인해 향후 5년 내에 빠른 성장이 예상된다. 이러한 상황에 따라서 전 세계적으로 풍력 발전을 가속화하고 있으며, 해상풍력으로 진입하려는 시도가 많아지고 있다. 노르웨이 해상 안전 관리처(PSA: Petroleum Safety Authority)는 운영하는 동안 충돌사고에 대한 충돌에너지가 35 MJ을 견딜 수 있는 안전설계 기준을 요구하고 있다. 따라서 본 연구에서는 북해 해상풍력발전기 설치 단지에 투입되는 해상풍력발전기 설치 선박(WTIV)의 레그 (Leg)와 선박충돌 사고에 대하여 발생 가능한 충돌시나리오에 대해서 비선형 소성붕괴 거동 결과를 바탕으로 레그의 충돌강도평가법을 분석하였다. 분석된 결과로 현재 설계된 기존 선박을 기준으로 요구치인 35 MJ을 만족을 위해서는 200 % 이상의 단면계수 증가가 필요하고, 이는 현실적인 레그 설계에서는 불가능한 조건으로 판단됐다. 또한, 합리적인 충돌시나리오를 기반으로 한 충돌에너지 기준의 제정이 필요하다.

1차원 충돌 동역학 해석을 이용한 한국형 고속전철의 충돌사고 안전도 평가 (An Evaluation of Crashworthiness on the KHST using 1D Collision Dynamic Analysis)

  • 구정서;조현직
    • 연구논문집
    • /
    • 통권32호
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the crashworthiness of KHST has been evaluated by analysing a nonlinear spring/bar-damper-mass model of 1-dimensional collision dynamics. The numerical results show that KHST can easily absorb kinetic energy at lower impact force and acceleration in heavy collisions, when compared with KTX. Also, in a Light collision like a traint-to-train accident at lower speed under 8 kph, the carbody and components of KHST can be protected without any damage except the energy absorbing tube to be replaced easily. However, KTX may be much damaged in the light collision because there is no energy absorbing tube. In conclusion, the crashworthy performance of KHST has been much improved than that of KTX, although there are something to be improved for a better crashworthy performance

  • PDF

1차원 충돌 동역학 모델을 이용한 한국형 고속전철의 충돌안전도 평가 (An Evaluation of Crashworthiness on the KHST using 1D collision dynamics)

  • 조현직;구정서;윤영한
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.47-53
    • /
    • 2002
  • In this study, the crashworthiness of KHST is evaluated by analysing a nonlinear spring/bar-damper-mass model using 1 dimensional collision dynamics. The numerical results show that KHST can easily absorb kinetic energy at lower impact force and acceleration in heavy collisions, when compared with KTX. Also, in a light collision like a traint-to-train accident at speed under 8 kph, the carbody and components of KHST can be protected without any damage except a energy absorbing tube to be replaced easily. However, KTX may be much damaged in the light collision because there is no energy absorbing tube. In conclusion, the crashworthy performance of KHST has been much improved than that of KTX, although there remains something to be improved for a better performance.

  • PDF

고속전철 TGV-K 전체 차량에 대한 충돌안전도 해석 연구 (Collision Analysis of Full Rake TGV-K for crashworthy design)

  • 구정서;송달호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.361-368
    • /
    • 1998
  • Described in this paper is the result of a study on collision analysis of TGV-K using 1-dimensional model for crashworthy design. Crashworthy design of the front end is very important because majority of the impact energy (more than 70%) is absorbed by the crush of the front end when the train is collided with an obstacle like a tank lorry. Guideline for the crashworthy design can be described from the collision analysis of the whole train using a 1-dimensional model. Since the headstock of TGV-K is not designed in a crashworthy point of view, a conceptual design of the headstock to improve crashworthiness is suggested and evaluated using 1-dimensional collision analysis. The suggested design, which adopts an energy absorber and a crashworthy headstock, shows a good behaviour on the accident scenario of SNCF (collision at 110 km/hr against a movable rigid mass of 15 ton).

  • PDF

철도차량 충돌 시뮬레이션 (Crash Simulation of Rolling Stock)

  • 김필환;이장욱;김진태;김창수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.401-407
    • /
    • 1998
  • Recently, as the railway vehicles become speedy and massive, the collision is being regarded as an important factor for the assessment of safety for passenger. And the study of collision is being in progress more actively in advanced nations. In this study, the collision analysis is performed by using non-linear dynamic finite element program PAM-CRASH. The carbody used in analysis is made of Aluminum AL6005A to realize lightweight, and designed and manufactured by DHI (Daewoo Heavy Industry) lately. For the accuracy of the result in the practical collision, the experiment of material properties has been performed. The result of the analysis shows the underframe of rolling stock is the most important part as a collision energy absorbing structure. Further study is needed for optimal design which enables the carbody shell structure to disperse absorbing energy adequately.

  • PDF