• Title/Summary/Keyword: Collision Angle

Search Result 234, Processing Time 0.033 seconds

Estimation of Ship Collision Energy with Bridge (교량의 선박충돌 에너지 산정)

  • Lee Seong-Lo;Kang Sung-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.416-419
    • /
    • 2004
  • The kinetic energy during ship collision with bridge piers is released as the permanent deformations of structure and friction between the impact surfaces. So the ship collision energy is estimated from the equations of motions for ship-pier collisions which include the influence of the surrounding water, different impact angles and impact locations. The normal impact energy and tangent impact energy at a collision location and angle can be transformed into the normal impact force and friction force acting on the structure. Also the kinetic energy after collisions is calculated from the linear and angular impulse of ship collisions. The collision energy absorption system such as the protective structures for bridges is designed by evaluating the damage portions of ship and structure during the ship-structure collisions varying from the soft impact to hard impact and then the estimation of it will be suited for the design of protective measures.

  • PDF

Collision Risk Probability Considerations for Small Divided Areas

  • Guk, Seung-Gi;Fukuda, Gen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.387-389
    • /
    • 2013
  • In order to determine the collision risk, the probability estimation is very important part for accurate risk estimation. Recently, the collision risk at the Busan North Port is studied for making the risk map by authors. The result has been found some connections with previous collision places. For more precise estimation, the probability calculation is necessary. Recently the Bayesian matrix is mainly used for calculating the probabilities. Also considering the oil spill risk with tankers, ships' speed, relative angle and ships' size are key aspect whether breaking the double hull or not. This research presents the way of estimating the probabilities not her research and also the collision risk probability considerations for small divided areas.

  • PDF

LOCAL COLLISION SIMULATION OF AN SC WALL USING ENERGY ABSORBING STEEL

  • Chung, Chul-Hun;Choi, Hyun;Park, Jaegyun
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.553-564
    • /
    • 2013
  • This study evaluates the local damage of a turbine in an auxiliary building of a nuclear power plant due to an external impact by using the LS-DYNA finite element program. The wall of the auxiliary building is SC structure and the material of the SC wall plate is high manganese steel, which has superior ductility and energy absorbance compared to the ordinary steel used for other SC wall plates. The effects of the material of the wall, collision speed, and angle on the magnitude of the local damage were evaluated by local collision analysis. The analysis revealed that the SC wall made of manganese steel had significantly less damage than the SC wall made of ordinary steel. In conclusion, an SC wall made of manganese steel can have higher effective resistance than an SC wall made of ordinary steel against the local collision of an airplane engine or against a turbine impact.

Construction Vehicle Collision Warning System (공사 차량 충돌 경고 시스템)

  • Shin, Seong-Yoon;Cho, Gwang-Hyun;Cho, Seung-Pyo;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.414-415
    • /
    • 2022
  • In this paper, we are going to develop a collision accident prevention technology that automatically recognizes more than 98% of workers and obstacles in 360° around them during work/high-speed movement/cabin rotation, guides collision warning and secures the driver's viewing angle.

  • PDF

A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

  • You, Youngjun;Rhee, Key-Pyo;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.188-198
    • /
    • 2013
  • In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

An Experimental Study on the Turbulence Characteristics of a Cross Jet with Respect to Cross Angle Variations (충돌분사의 충돌각 변화에 따른 난류특성의 실험적 연구)

  • 노병준;최진철;강신재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.991-998
    • /
    • 1989
  • This investigation was carried out for the purpose of studying the turbulent flow and mixing characteristics after collision of two jets depending upon the cross angle variations. For effectuating this experimental study, a subsonic wind tunnel and a constant temperature type two channel hot-wire anemometer system have been utilized. The jets issuing from two nozzles have same Reynolds numbers and their cross angle was variable. After collision of two jets, the cross section of the mixing flow, mean and fluctuating velocities and Reynolds stresses have been measured, and analyzed comparing them with semi-empirical equations. It was found that the nondirectional contour of the cross section agreed well with an elliptic formula and the mean velocities along the centerline had a good similarity independent of cross angle variations. The distributions of U over bar-components measured in the Y direction have a good similarity and agree well with semi-empirical equations of Hinze and Gortler. The Reynolds stresses of u'v' over bar on the Y axis show a similar distributions and their agreement with the theoretical curve is remarkable but those of u'w' over bar measured along the Z axis are randomly scattered.

Study About the Crash Safety of Occupants According to the Reclining Postures and Impact Angle under MPDB Test Types (차대차 충돌평가(MPDB)에서 충돌 각도 및 젖힘자세 특성 등에 따른 승객 상해 연구)

  • Jeongmin In;Jaehong Ma;Hyungjin Chang;Joonho Jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.3
    • /
    • pp.59-65
    • /
    • 2023
  • As advanced driving assistance system (ADAS) and autonomous driving performance continue to improve, existing crash accidents and crash types are changing. Accordingly, the collision angle and the seating posture of the occupant are changed. It is necessary to study how the occupant injury mechanism changes according to these different crash types. In this regard, a representative crash test mode was derived when the automatic emergency braking system (AEB), one of the autonomous driving performance, was applied to the representative car-to-car crash scenario in Korea. The derived crash test mode was used to analyse the mechanisms of collision injuries according to both impact angle and the occupant seating posture (reclined seat-back angle). The results obtained through this study can be utilized as reference data for the development of new crash evaluation methods and improvements in crash restraint systems for enhancing crash safety.

A Study on the Quantative Analysis of a Ship's Collision Avoding Action by Using the Maneuvering Indices (조종성지수에 의한 충돌회피동작의 양적 파악에 관한 연구)

  • 윤점동
    • Journal of the Korean Institute of Navigation
    • /
    • v.1 no.1
    • /
    • pp.27-44
    • /
    • 1977
  • The Maneuvering Indices of a ship are the values that decide the quantity of her motion in turning when her rudder is turned over to an angle to the starboard or the port. They consist of two kinds of indices, one of which is called index K and the other, index T. Index K decides a ship's turning ability and index T does the length of time delay of a normal turning motion after her rudder has finished the turn of an ordered angle. Generally, the values of the indices are calculated through some mathematic formulas with figures of her heading degrees recorded at a fixed time intervals during her Z test. The values of the same kind index of a ship appear differently according to the ship'sspeed, trim, rudder angle and loaded condition, etc. In this paper, the author analyzed all the amthematic formulas required to calculate the values of the indices in their forming process and examined them from the point of mathematics and dynamics and also actually figured out the values of maneuvering indices of the M.S. "HANBADA", the training ship of Korea Merchant Marine College through her Z test. The author supposed a case in which two same typed ships as the "HANBADA" in size, shape and conditions were approaching each other in meeting end on situation and each ship turned her rudder hard over to the starboard respectively when they approached to the distance of 3 times as long as the ship's length. The author worked out mathematic formulas calculating forward and transverse ship's motions within the above mentioned situation for the quantative analysis of the collision avoding action to certify whether they are in collision status or not. Applying the calculated values of the maneuvering indices of the "HANBADA" to the motion calculating formulas, the author found out the two ships were passing over each other with the clearing distance o 39m between their port quarters. With the above mentioned examinations and explanations, the author demonstrated that a ship's motion in any collision avoiding action can be shown with quantities of time and distance within reliable limit.istance within reliable limit.

  • PDF

Collision Analysis between FRP Fishing Boats According to Various Configurations (여러 가지 충돌 상황에 따른 FRP 어선 간의 충돌 해석)

  • Jang, In-Sik;Kim, Yong-Seop;Kim, Il-Dong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.253-262
    • /
    • 2006
  • In this paper, collision analysis is carried out between two FRP fishing boats. A computer simulation with finite element method is used to accomplish this objective. At first, a detailed geometric model of the boat is constructed using 3-D CAD program. The formation of a finite element from a geometric data of the boats is carried out using HYPERMESH that is the commercial software for mesh generation and post processing. Twelve collision configurations are established by combining two kinds of contact angle($90^{\circ},\;135^{\circ}$) and three different speed(5, 10, 15knot) for small and large boats. Collision analysis is accomplished using DYNA3D. Stress distribution and deformation shape are investigated for each collision condition. In general, $90^{\circ}$ collision angle generate larger stress than $135^{\circ}$ case and the collision for two moving boats showed larger maximum stress than the case that one is moving and the other is stationary. When analysis is carried out until 150ms contact parts of two boats are broken for 10 and 15knot collision speed, in which maximum stress is larger than ultimate strength of the material.

  • PDF

Collision risk considering the international regulations for preventing collisions at sea, 1972 ('72국제해상충돌방지규칙을 고려한 충돌위험도 결정 시스템)

  • Kang, Il-Kwon;Kim, Hyung-Seok;Kim, Min-Seok;Kim, Jeong-Chang;Lee, A-Reum
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.2
    • /
    • pp.106-113
    • /
    • 2009
  • For the safety and cost reduction in the navigation, the automatic and intelligent system has been developed for the vessel, and the most important factor in the system is to decide the collision risk exactly. In this paper, we propose an advanced collision risk decision system for collision avoidance of the system. The conventional researches using DCPA and TCPA for calculating the collision risk have a problem to produce a same collision risk regardless of bearings for the ships, if they are located in the same distance from own ship. To solve this problem, in addition to DCPA and TCPA, we introduce the factor of VCD(variation of compass degree) and constant, CR which derived from COLREG'72(International Regulation for Preventing Collision at Sea, 1972) for evaluating the collision risk including even the burden of own ship navigator due to the encountering angle of each vessels. We decided the collision risk legally by the rule considering the relative situation of vessels. And therefore, the proposed system has two advantages, of which one is to produce more detail collision risk and another is to reflect the real underway situation in conformity with the rule.