• Title/Summary/Keyword: Collecting Electrode

Search Result 40, Processing Time 0.029 seconds

Spark-induced Breakdown Spectroscopy System of Bulk Minerals Aimed at Planetary Analysis (스파크 유도 플라즈마 분광 시스템을 이용한 우주탐사용 암석 분석연구)

  • Jung, Jaehun;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.1013-1020
    • /
    • 2020
  • Spark-induced breakdown spectroscopy (SIBS) utilizes an electric spark to induce a strong plasma for collecting atomic emissions. This study analyses the potential for usinga compact SIBS instead of conventional laser-induced breakdown spectroscopy (LIBS) in discriminating rocks and soils for planetary missions. Targeting bulky solids using SIBS has not been successful in the past, and therefore a series of optimizations of electrode positioning and electrode materials were performed in this work. The limit of detection (LOD) was enhanced up to four times compared to when LIBS was used, showing a change from 78 to 20 ppm from LIBS to SIBS. Because of the higher energy of plasma generated, the signal intensity by SIBS was higher than LIBS in three orders of magnitude with the same spectrometer setup. Changing the electrode material and locating the optimum position of the electrodes were considered for optimizing the current SIBS setup being tested for samples of planetary origin.

Nanoarchitectures for Enhancing Light-harvesting and Charge-collecting Properties in Dye-sensitized Solar Cells

  • Jeong, Hyeon-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.13.1-13.1
    • /
    • 2011
  • Photoelectrochemical solar cells such as dye-sensitized cells (DSSCs), which exhibit high performance and are cost-effective, provide an alternative to conventional p-n junction photovoltaic devices. However, the efficiency of such cells plateaus at 11~12%, in contrast to their theoretical value of 33%. The majority of research has focused on improving energy conversion efficiency of DSSC by controlling nanostructure and exploiting new materials in photoelectrode consisting of semiconducting oxide nanoparticles and a transparent conducting oxide electrode (TCO) [1-5]. In this presentation, we introduce inverse opal-based scattering layers containing highly crystalline anatase nanoparticles and their feasibility for use as bi-functional light scattering layer is discussed in terms of optical reflectance and charge generation properties as a function of optical wavelength. A new ITO nanowire-based photoelecrode is also introduced and its unique charge collection property is presented, demonstrating potential use for highly efficient charge collection in DSSC.

  • PDF

High-Efficiency Polymer-Titanium Oxide Hybrid Solar Cells

  • Lee, Kwang-Hee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.186-186
    • /
    • 2006
  • We report a new architecture for high efficiency polymer solar cells introducing a new concept of 'optical spacer' with new material. By implementing a novel solution-based titanium oxide ($TiO_{x}$) layer between the active layer and the electron collecting Al electrode, we invented a way to increase ${\sim}50\;%$ in power conversion efficiency compared to conventional polymer solar cells. Now the new devices exhibit ${\sim}6\;%$ power conversion efficiency, which is the highest value reported to date for a polymer based photovoltaic cell. The $TiO_{x}$ layer increases the efficiency by modifying the spatial distribution of the light intensity inside the device, thereby creating more photogenerated charge carriers in the bulk heterojunction layer.

  • PDF

A Study on the Development of Thin ESP for High Efficient Air-conditioner (공조용 박형 전기집진장치 개발에 관한 연구)

  • Hong, Yeong-Gi;Sin, Su-Yeon;Jo, Jeong-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.34-38
    • /
    • 1999
  • In order to develop a thin type ESP(Electrostatic Precipitator) for high efficient air-conditioner with low concentration of ozone generation, collecting electrode spacing should be narrower than that from Deutsch formula and minimizes discharge current in ionizer. In this paper, the effect of applied voltage on the precipitation efficiency and ozone concentration of scroll type ESP was studied. As a result, precipitation efficiency(one pass) was improved by about 30[%] from increment of collector voltage(3.5[㎸]). Precipitation efficiency was increased with increasing ionizer voltage. And after some point, the efficiency was saturated. At the point, voltage and ionizer current was 5.2[㎸] and 95$[\muA]$ per meter respectively. At these applied voltage conditions, ozone concentration was saturated about 0.01[ppm] after 3 hours in 23$[m^3]$ closed room test.

  • PDF

DSSC광전극의 나노구조 제어 및 투명전극 소재 개발

  • Jung, Hyun-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.28-28
    • /
    • 2010
  • Photoelectrochemical solar cells such as dye-sensitized cells (DSSCs), which exhibit high performance and are cost-effective, provide an alternative to conventional p-n junction photovoltaic devices. However, the efficiency of such cells plateaus at 11-12%, in contrast to their theoretical value of 33%. Improvements in efficiency can only occur through a fundamental understanding of the underlying physics, materials, and device designs of DSSCs. A photoelectrode consisting of semiconducting oxide nanoparticles and a transparent conducting oxide electrode (TCO) is a key component of DSSC and design of photoelectrode materials is one of promising strategies to improving energy conversion efficiency. We introduce monodisperesed $TiO_2$ nanoparticles prepared by forced hydrolysis method and their superiority as photoelectrode materials was characterized with aids of optical and electrochemical analysis. Multi-layered TCO materials are also introduced and their feasibility for use as photoelectrodes is discussed in terms of optical absorption and charge collecting properties.

  • PDF

FMEA of Electrostatic Precipitator for Preventive Maintenance (전기집진기 예지보전 단계에서의 고장모드영향분석)

  • Han, Seung-Hun;Lee, Jeong-Uk;Lee, Sun-Youp;Hwang, Jong-Deok;Kang, Dae-Kon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.706-714
    • /
    • 2020
  • Currently, 90 % of the world's population breathes air with a fine dust content exceeding the World Health Organization's annual average exposure limit (10 ㎍/㎥). Global efforts have been devoted toward reducing secondary pollutants and ultra-fine dust through regulations on nitrogen oxides released over land and sea. Domestic efforts have also aimed at creating clean marine environments by reducing sulfur emissions, which are the primary cause of dust accumulation in ships, through developing and distributing environment-friendly ships. Among the technologies for reducing harmful emissions from diesel engines, electrostatic precipitator offer several advantages such as a low pressure loss, high dust collection efficiency, and NOx removal and maintenance. This study aims to increase the durability of a ship by improving equipment quality through failure mode effects analysis for the preventive maintenance of an electrostatic precipitator that was developed for reducing fine dust particles emitted from the 2,427 kW marine diesel engines in ships with a gross tonnage of 999 tons. With regard to risk priority, failure mode 241 (poor dust capture efficiency) was the highest, with an RPN of 180. It was necessary to determine the high-risk failure mode in the collecting electrode and manage it intensively. This was caused by clearance defects, owing to vibrations and consequent pin loosening. Given that pin loosening is mainly caused by vibrations generated in the hull or equipment, it is necessary to manage the position of pin loosening.

Technical Note: Development of Wireless Electrooculorgraphy System to Measure Vestibuloocular Reflex (단신: 전정 반사 분석을 위한 안구 움직임 무선 측정 장치 개발)

  • Park, Yang-Sun;Kim, Hyung-Sik;Yi, Jeong-Han;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.39-43
    • /
    • 2008
  • The purpose of this study was to develop EOG system for collecting eye movement patterns to investigate visual function and position and the level of balancing. This small and partable wireless EOG system was enabled to collect stable signals without hindering any kind of sports movement. This system was consist of four parts: amplifier, main process with wireless transmitter, receiver, and display. Three EOG electrodes were used and placed on right(+), left(-) sides of eyes, and between eyes as a reference. This system was possible to measure signals for relatively long duration but the degeneration of electrodes may magnify measurement errors when collecting time was getting longer. Thus, dry electrodes may be applied to the system when long term measurement is needed for future studies.

A Study on Fabric Material Test of Conductive-Fabric Type ECG Electrode for u-Healthcare Application (u-헬스케어 응용을 위한 전도성 섬유 심전도 전극의 섬유적 특성 시험 연구)

  • Kang, B.K.;Hwang, I.H.;Yoo, S.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.31-41
    • /
    • 2012
  • The combination of developed medical devices and the convergence of IT fusion technologies, health variables became to can be measured without discomfort in everyday life regardless of wherever and whenever. because various types of u-Health medical devices have been developed. Also, by considering the users, biological signals can be measured without difference with wearing general clothing, that conductive fabric is being used as smart clothing. However, considering that there is a growing prevalence of the devices and a great interest in the development of u-Health devices, it is urgent to establish performance evaluation. Accordingly, writing guidelines by force to raise checking before marketed or collecting checks after at the market for standard test methods for evaluating the performance. In this paper, it was studied that the possibility of using conductive fabric as electrodes for Wearable u-Health Devices through the material test of the ffabric.

  • PDF

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung;Kim, Hanki;Hwang, Kyo-Sik;Jeong, Namjo;Kim, Chan-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.302-312
    • /
    • 2019
  • The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.

Pilot Test of Electrocardiogram Measurement Method for Conductive Textiles Electrode Position in Bed Condition (침대 형태에서 기능성 직물 전도성 전극 위치에 대한 심전도 측정 방법의 Pilot Test)

  • Jun won, Choi;Lina A., Asante;Chang Hyun, Song;Halim, Chung;Han Sung, Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.80-84
    • /
    • 2023
  • Electrodes are one of the types of biosensors capable of measuring bio signals, such as electrocardiogram (ECG) and electromyogram (EMG) signals. These electrodes are used in various fields and offer the advantage of being able to measure ECG signals without the need for skin attachment, compared to Ag/AgCl electrodes. The purpose of this study was to evaluate the efficacy of conductive textile electrodes in collecting ECG signals in a bed-like environment. Three adult participants were involved, and a total of 30 minutes of ECG signals were collected for each participant. The collected ECG signals were analyzed to determine the heart rate, normLF and a comparison was made between the conductive textile electrodes and Ag/AgCl electrodes. As a result, the change in heart rate and normLF could be observed, and in particular, the difference between the two electrodes decreased. This study confirmed that conductive textile electrodes can effectively collect ECG signals in a bed-like environment. It is hoped that this research will lead to the development of a system that can detect various sleep-related diseases through the use of these electrodes.