• Title/Summary/Keyword: Collapse-sensor

Search Result 55, Processing Time 0.028 seconds

A Study on behavior of Slope Failure Using Field Excavation Experiment (현장 굴착 실험을 통한 사면붕괴 거동 연구)

  • Park, Sung-Yong;Jung, Hee-Don;Kim, Young-Ju;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.101-108
    • /
    • 2017
  • Recently, the occurrence of landslides has been increasing over the years due to the extreme weather event. Developments of landslides monitoring technology that reduce damage caused by landslide are urgently needed. Therefore, in this study, a strain ratio sensor was developed to predict the ground behavior during the slope failure, and the change in surface ground displacement was observed as slope failed on the field model experiment. As a result, in the slope failure, the ground displacement process increases the risk of collapse as the inverse displacement approaches zero. It is closely related to the prediction of precursor. In all cases, increase in displacement and reverse speed of inverse displacement with time was observed during the slope failure, and it is very important event for monitoring collapse phenomenon of risky slopes. In the future, it can be used as disaster prevention technology to contribute in reduction of landslide damage and activation of measurement industry.

Feasibility Check of Textile Sensor Made of P(VDF-TrFE) for Structural Health Monitoring of Composite Structures (복합재료 구조물의 건전성 모니터링을 위한 P(VDF-TrFE) 직물센서의 가능성 평가)

  • Bae, Ji-Hun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.126-131
    • /
    • 2017
  • For structural health monitoring of a complex shaped structure a new sensor that can compensate for the drawbacks of the current sensors such as brittleness is needed and the sensor should be highly flexible and durable. In this study a textile sensor made of polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) which is a type of electroactive polymer was fabricated. And the textile sensors were applied to a complex shaped structure (an egg-box panel made of carbon/epoxy composite) for checking their feasibility of structural health monitoring. To correlate the collapse response with failure mechanisms of the structure the multiply-interrupted compressive test was carried out. During the test, the textile sensors succeeded to prove their applicability for damage detection (crack initiation) by generating electric voltages (0.05 V-0.25 V) in the real time.

Fundamental Study on Developing Embedded Mini-Sensor for Nondestructive Diagnosis Corrosion of Rebar (비파괴 철근 부식 진단을 위한 매립형 미니센서 개발에 관한 기초적 연구)

  • Joh, Sung-Hyung;Lim, Young-Chul;Ismail, Mohamed;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.179-187
    • /
    • 2010
  • Corrosion of rebar embedded reinforced concrete is the main cause of collapse and degradation of reinforced concrete structure. Degradation occurs in reinforced concrete structures from corrosion caused by the Chloride that the damage other than the severe degradation of the structure in terms of maintenance and construction when the huge expense required and deciding terms is hard. Therefore, early detection of rebar corrosion is important for efficient maintenance and repairing and planning. Meanwhile, how to evaluate the corrosion of the non-destructive measurements have been used a lot. In particular CM-II (corrosion meter) is used to measurement the natural potential, polarization resistance and the resistivity of the concrete, but has some disadvantages. Embedded mini-sensor has been developed in order to overcome these disadvantages. So Measurement corrosion for using the mini-sensor compares with the measured results CM-II (corrosion meter), the developed mini-sensor verify the validity.

Fiber Interferometers Based on Low Loss Fusion Splicing of Photonic Crystal Fibers (저손실 융착접속을 이용한 광자결정 광섬유 간섭계)

  • Ahn, Jin-Soo;Kim, Gil-Hwan;Lee, Kwan-Il;Lee, Kyung-Shik;Lee, Sang-Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.5
    • /
    • pp.200-205
    • /
    • 2010
  • We report temperature and strain sensing characteristics of two kinds of in-line fiber interferometers. One interferometer consists of a section of Hollow Optical Fiber(HOF) spliced between two Photonic Bandgap Fibers(PBGF) and the other is built by splicing a section of HOF between two Large Mode Area-Photonic Crystal Fibers(LMA-PCF). To minimize the splice losses, we carefully optimized the heating time and arc current of the splicer so as not to collapse the air holes of the fiber. It is found that the first interferometer has a temperature sensitivity of 15.4 pm/$^{\circ}C$ and a strain sensitivity of 0.24 pm/${\mu}\varepsilon$. The other interferometer exhibits a temperature sensitivity of 17.4 pm/$^{\circ}C$ and a strain sensitivity of 0.2 pm/${\mu}\varepsilon$.

Design of Facility Monitoring System Module for Ubiquitous Computing (유비쿼터스 환경의 시설물 모니터링 시스템 구현을 위한 모듈 설계)

  • Lee, Woo-Sik;Nam, Sang-Kwan
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.606-609
    • /
    • 2006
  • In Korean domestic construction industry, they tend to emphasize completion of structures, but on the other hand to neglect structure maintenance, before mid nineteen-nineties when consecutive structure collapse accidents arisen. Presently, facility monitoring systems are restrictively applying to large size facilities with wired method, and there are some limitations to apply these systems to small and mid size facilities throughout the country. According to the latest tendency, there is rapid growth of ubiquitous related technologies such as sensor, sensor network, wireless communications, and also there are large amount of efforts to apply these technologies to construction fields. However, these researches put values on technology itself, but researches for applications and practical use of these technologies are insufficient. Especially, researches about these technologies to apply facility monitoring field is still less unsatisfactory. Therefore, this paper will focused on methodologies about module structure by stages to realize facility monitoring systems in ubiquitous environment.

  • PDF

Development of MEMS Sensor-based High Resolution Tilt Monitoring System (MEMS 센서 기반 고정밀 기울기 모니터링 시스템 설계)

  • Son, Young-Dal;Eun, Chang-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1364-1370
    • /
    • 2019
  • Tilt sensors are mainly used to measure the collapse of structures such as buildings, bridges and tunnels. Recently, due to the ease of use and low price, many tilt sensors using MEMS sensors have been used, but the measurement angle range is limited, and thus, they do not have high precision for 360 degree. This is due to the inherent offset and scale errors of MEMS sensors. In this paper, we proposed an algorithm for the calculation of precision angles to reduce the mechanical error of MEMS sensors, and produced a MEMS sensor module and a transmission module to compare the angle accuracy of sensor modules before calibration and the angle measurement accuracy after calibration. Experimental results show that the proposed technique has a precision of ± 0.015 degrees for all 360-degree.

Development of a Customized Beacon Equipped with a Strain Gauge Sensor to Detect Deformation of Structure Displacement (구조물의 변위 변형 감지를 위한 변형률 센서를 장착한 커스터마이징 비콘 개발)

  • Kim, Junkyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.1-7
    • /
    • 2021
  • This study attempted to detect possible collapse and fire accidents in facilities for disaster monitoring of large facilities, and to develop a customized beacon to recognize the internal situation of an IoT-based facility when a disaster occurs. In the case of data measurement using the existing strain gauge sensor, the strain gauge sensor was connected by wire to measure it, but this study changed it to wireless so that the presence and absence of structural deformation can be monitored in real time. In this process, in order to use the Wheatstone bridge, a strain sensor module that can be connected to a customized beacon was manufactured, and a system configuration was conducted to remotely check the measurement data. To verify measurement data, 10 customized beacons and 2 gateways were installed on the 15th floor of the Advanced Institue of Convergence Technology, and as a result of analysis of measurement data, it was confirmed that the strain data values were distributed between 7 and 8.

Introduction of the Structural Health Monitoring System with Fiber Optic Sensor & USN for Subway Station (광섬유센서 및 USN 기술의 지하역사 구조건전성 감시시스템 적용방안 연구)

  • Shin, Jeong-Ryol;Ahn, Tae-Ki;Lee, Woo-Dong;Han, Seok-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.224-231
    • /
    • 2008
  • A subway or an underground railway is one of the representative public transportations which lots of people take everyday. Then, subway station, which is also one of the very important public civil infrastructures, generally services for a long period of time. During the service time of stations, they are easily damaged from environmental corrosion, material aging, fatigue, and the coupling effects with long-term loads and extreme loads. Recently, civil construction work on the places near station often creates lots of damages to the station. As these damages accumulate, the performance of station degenerates due to the above factors. They would inevitably reduce the resisting capacity of station against the disaster; even they bring into the collapse of stations with the structural failure under long-term loads and extreme loads. And, if disaster such as earthquake, fire, etc. happens, it causes huge property damage and threatens the human lives. Because of these above reasons, the structural health monitoring system need to be developed for ensuring the safety of station. In this paper, the development directions of the structural health monitoring system with fiber optic sensor and USN for subway station are briefly described.

  • PDF

APPLICATION OF WIRELESS INCLINOMETER FOR DISPLACEMENT MEASUREMENT OF TEMPORARY EARTH RETAINING PILE

  • Chi Hun In;Hong Chul Rhim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.218-223
    • /
    • 2009
  • During the process of excavation for substructures of buildings, precise and constant measurements of retaining wall displacement is crucial for construction to be complete and safe. Currently an inclinometer is used to measure displacement around the perimeter of an excavation site. The existing inclinometer system requires an instrument to be placed inside pre-bored holes for each measurement with an typical interval of two weeks. This makes it difficult to obtain continuous displacement data, especially during a critical time such as rainy season in summer. Also, the existing inclinometer is placed at certain distance away from the retaining wall system itself. Thus, exact measurement of retaining wall movement is compromised because of the distance between the retaining wall and the inclinometer. This paper presents the development of wireless inclinometer system for the displacement measurement of retaining walls by being attached directly to the retaining wall. The result of the application of the developed systems are provided with advanced ubiquitous sensor network (USN) system features. The USN technique incorporated into the system enables users to monitor movement data from wherever possible and convenient such as construction manager's office on site or any other places connected through internet. The research work presented in this paper will provide a basis to save construction time and cost by preventing safe-related unexpected delay of construction due to the failure or collapse of retaining walls.

  • PDF

Development of Structural Health Monitoring System based USN for a Huge Infrastructure (USN 기반의 대형 사회 기반 시설물 계측 시스템 개발)

  • Kim, Tae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • With due to the recent development of USN (Ubiquitous Sensor Network) technology, a monitoring system has been developing for assuring the structural integrity of infrastructure through normal or long term measurements during their lifetime. An accident such as a collapse of infrastructure may cause not only loss of life but also damage to the economy of the nation. In order to enhance the availability of infrastructure and to be able to maintain their lifetime, it is necessary to monitor and to evaluate continuously the structural integrity throughout their entire lifetime. The purpose of this paper is to develop a monitoring system integrated with evaluation function based on the ubiquitous technology. The most essential part of this study is focusing more on developing a specific module convertible to A/D, which is to enhance the applicability of sensors that had not been applied to existing monitoring systems. Conclusively it has been successfully enhanced to make more diverse the number of sensors and measuring techniques for the monitoring system.