• Title/Summary/Keyword: Collapse time

Search Result 583, Processing Time 0.03 seconds

A Study on the Improvement of the Stability of Small-Scale Manpower Tunnels for Food Storage (식품저장용 소규모 인력터널의 안정성 향상을 위한 방안 연구)

  • Byung Jo Yoon;Sung Yun Park;Ryung Hwan Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.746-753
    • /
    • 2022
  • Purpose: The purpose of this study is to review the safety of small tunnels for food storage excavation in the 1960s~1970s and to improve the stability of small tunnels. Method: A visual inspection and a hammer test were used to conduct safety tests, and the visual inspection is one of the tests conducted for non-destructive testing, and the hammer test is one of the types of hitting methods of rebound hardness. Result: According to the integrated analysis of the survey area data, there are generally good appearance, but there are many small cracks and complex geological conditions, requiring continuous observation and attention. Seven of the 23 tunnels require safety diagnosis, one collapse, one safe, and 14 require continuous observation and attention. Conclusion: All parts of small tunnels should be checked and recorded from time to time, and stability is expected to be improved when reinforcing small tunnels proposed in this study.

Research on Artificial Intelligence Based Shipping Container Loading Safety Management System (인공지능 기반 컨테이너 적재 안전관리 시스템 연구)

  • Kim Sang Woo;Oh Se Yeong;Seo Yong Uk;Yeon Jeong Hum;Cho Hee Jeong;Youn Joosang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.9
    • /
    • pp.273-282
    • /
    • 2023
  • Recently, various technologies such as logistics automation and port operations automation with ICT technology are being developed to build smart ports. However, there is a lack of technology development for port safety and safety accident prevention. This paper proposes an AI-based shipping container loading safety management system for the prevention of safety accidents at container loading fields in ports. The system consists of an AI-based shipping container safety accident risk classification and storage function and a real-time safety accident monitoring function. The system monitors the accident risk at the site in real-time and can prevent container collapse accidents. The proposed system is developed as a prototype, and the system is ecaluated by direct application in a port.

The political implication of Malaysia's electoral authoritarian regime collapse: Focusing on the analysis of the 14th general election (말레이시아 선거권위주의 체제 붕괴의 정치적 함의 : 2018년 14대 총선을 중심으로)

  • HWANG, Inwon
    • The Southeast Asian review
    • /
    • v.28 no.3
    • /
    • pp.213-261
    • /
    • 2018
  • On May 9, 2018, regime change took place in Malaysia. It was the first regime change that took place in 61 years after independence in 1957. The regime change was an unexpected result not only in Malaysian experts but also in political circles. Moreover, the outcome of the election was more shocking because the opposition party was divided in this general election. The regime change in Malaysia was enough to attract worldwide attention because it meant the collapse of the oldest regime in the modern political system that exists, except North Korea and China. How could this have happened? In particular, how could the regime change, which had not been accomplished despite opposition parties' cooperation for almost 20 years, could be achieved with the divided opposition forces? What political implications does the 2018 general election result have for political change and democratization in Malaysia? How will the Malaysian politics be developed in the aftermath of the regime change? It is worth noting that during the process of finding answers, a series of general elections since the start of reformasi in 1998 tended to be likened to a series of "tsunami" in the Malaysian electoral history. This phenomenon of tsunami means that, even though very few predicted the possibility of regime change among academia, civil society and political circles, the regime change was not sudden. In other words, the regime in 2018 was the result of the desire and expectation of political change through a series of elections of Malaysian voters last 20 years. In this context, this study, in analyzing the results of the election in 2018, shows that the activation of electoral politics triggered by the reform movement in 1998, along with the specific situational factors in 2018, could lead to collapse of the ruling government for the first time since independence.

A Study on Preparation of Colloidal Gas Aphrons and Stability (Colloidal Gas Aphrons의 제조와 안정성에 대한 연구)

  • Yoon, Mi-Hae;Cho, Dae-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.670-677
    • /
    • 2007
  • The stability of CGAs(colloidal gas aphrons) prepared from non-ionic and ionic surfactants was investigated. Those surfactants were sodium dodecyl sulfate(SDS), Triton X-100, Tween 80 and Quillaja Saponin. The stability of CGAs prepared from single surfactants or mixed surfactants(two components) using a CGA generate. was investigated as functions of temperature, surfactant concentration and stirring time. Saponin among the single surfactants has shown the longest duration time(143 min) and then, Triton X-100, SDS, and Tween 80 were followed by at room temperature. In case of CGAs heated up to $70^{\circ}C$, SDS endured for 116 min but Saponin lasted for only 105 mit which was a considerable reduction of the duration time of CGAs at room temperature. For mixed surfactant pairs, stability of any one pairs stood between the two. That meant no synergic effect for surfactant blending. At the higher temperature, Saponin+Triton X-100 was disclosed to be the lowest, 53 min meanwhile Saponin+SDS was the highest at ambient temperature. The CGAs, initially about 140 ${\mu}m$ in diameter, began to grow right after the agitation to be about 190 ${\mu}m$ owing to coalescence of the bubbles and then became to collapse. When heated, CGAs including Saponin tended to be smaller while the others to be larger. In summary, we found that the stability of CGAs or the duration time was greater for single surfactants and at room temperature rather than for mixed surfactants that caused substantial intermolecular interactions in the CGA structure and at the higher temperature.

Structural Behavior of 3D Printed Concrete Specimens with Reinforcement (보강재가 있는 3D 프린팅 콘크리트의 구조거동)

  • Joh, Changbin;Lee, Jungwoo;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.174-181
    • /
    • 2018
  • This paper examines the structural behavior of 3D printed concrete specimens with focus on the bond between the layers. The tensile bond and flexural strengths were investigated experimentally and compared with those of specimens made by conventional mold casting. The test parameters were the time gap between printing layers and the reinforcement between vertical layers. The results showed the 3D printed specimens had voids between layers and confirmed the strength reduction due to printing time gap and the stress concentration caused by the voids. Most of the reduction in tensile bond strength between layers was due to the stress concentration at least up to certain printing time gap. Moreover, beyond a certain printing time gap (24hours), the additional reduction in tensile bond strength reached a level that could affect the structural behavior. The reinforcement between layers was helpful to increase the ductile behavior which is essential to prevent the sudden collapse of the structure. In addition, the reduction in flexural strength due to the stress concentration by the voids was observed and should be considered in the design of 3D printed wall structures against the lateral load.

Study on the Enhanced Specific Surface Area of Mesoporous Titania by Annealing Time Control: Gas Sensing Property (열처리 시간에 따른 메조기공 타이타니아의 비표면적 향상 연구: 가스센싱 특성 변화)

  • Hong, M.-H.;Park, Ch.-S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • Mesoporous ceramic materials were applied in various fields such as adsorbent and gas sensor because of low thermal conductivity and high specific surface area properties. This structure could be divided into open-pore structure and closed-pore structure. Although closed-pore structure mesoporous ceramic materials have higher mechanical property than open-pore structure, it has a restriction on the application because the increase of specific surface area is limited. So, in this work, specific surface area of closed-pore structure $TiO_2$ was increased by anneal time. As increased annealing time, crystallization and grain growth of $TiO_2$ skeleton structured material in mesoporous structure induced a collapse and agglomeration of pores. Through this pore structural change, pore connectivity and specific surface area could be enhanced. After anneal for 24 hrs, porosity was decreased from 36.3% to 34.1%, but specific surface area was increased from $48m^2/g$ to $156m^2/g$. CO gas sensitivity was also increased by about 7.4 times due to an increase of specific surface area.

Analysis of Extreme Rainfall Distribution Scenarios over the Landslide High Risk Zones in Urban Areas (도심지 토사재해 고위험지역 극치강우 시간분포 시나리오 분석)

  • Yoon, Sunkwon;Jang, Sangmin;Rhee, Jinyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.57-69
    • /
    • 2016
  • In this study, we analyzed the extreme rainfall distribution scenarios based on probable rainfall calculation and applying various time distribution models over the landslide high risk zones in urban areas. We used observed rainfall data form total 71 ASOS (Automated Synoptic Observing System) station and AWS (Automatic Weather Station) in KMA (Korea Meteorological Administration), and we analyzed the linear trends for 1-hr and 24-hr annual maximum rainfall series using simple linear regression method, which are identified their increasing trends with slopes of 0.035 and 0.660 during 1961-2014, respectively. The Gumbel distribution was applied to obtain the return period and probability precipitation for each duration. The IDF (Intensity-Duration-Frequency) curves for landslide high risk zones were derived by applying integrated probability precipitation intensity equation. Results from IDF analysis indicate that the probability precipitation varies from 31.4~38.3 % for 1 hr duration, and 33.0~47.9 % for 24 hr duration. It also showed different results for each area. The $Huff-4^{th}$ Quartile method as well as Mononobe distribution were selected as the rainfall distribution scenarios of landslide high risk zones. The results of this study can be used to provide boundary conditions for slope collapse analysis, to analyze sediment disaster risk, and to use as input data for risk prediction of debris flow.

Physiological Changes of Saccharomyces cerevisiae by High Voltage Pulsed Electric Field Treatments (고전압 펄스 전기장 처리에 의한 Saccharomyces cerevisiae의 생리적 변화)

  • Park, Hee Ran;Yoon, So Jung;Park, Han-Sul;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.590-597
    • /
    • 2013
  • High voltage pulsed electric fields (PEF) treatment is a promising non-thermal processing technology that can replace or partially substitute for thermal processes. The aim of this research was to investigate the microbial inactivation mechanisms by PEF treatment in terms of physiological changes to Saccharomyces cerevisiae. PEF was applied at the electric field strength of 50 kV/cm, treatment time of 56 ${\mu}s$ and temperature of $40^{\circ}C$. The microbial cells treated with PEF showed loss of salt tolerance on the cell membrane and collapse of the relative pH gradient on in-out of cells. Cell death or injury resulted from the breakdown of homeostasis, decreased $H^+$-ATPase activity, and loss of glycolysis activity.

Climate change and fluctuations of pelagic fish populations in the Far East region

  • Gong, Yeong;Suh, Young-Sang
    • Journal of Ecology and Environment
    • /
    • v.35 no.1
    • /
    • pp.15-25
    • /
    • 2012
  • Time series of ocean climate indices and catch records were used to identify the alternation patterns of pelagic fish populations in relation to climate regime shifts. During 1910-2008, an orderly alternation of dominant pelagic fish groups was observed in the Tsushima Warm Current (TWC; Yellow Sea-East China Sea-East Sea/Japan Sea) and Kuroshio-Oyashio Current (KOC; Northwestern Pacific) regions. After the collapse of herring fishery in the late 1920s, the sardine (A group) dominated in the 1930s, 3 other species (C group; Pacific saury, jack mackerel, and anchovy) dominated in the 1950s-1960s, chub mackerel (B group) dominated in the 1970s, and then sardine (A group) dominated again during cool regime in the 1980s. As sardine biomass decreased in association with the climate regime shift that occurred in the late 1980s, catches of C group immediately increased after the regime shift and remained at high levels during warm regime in the 1990s. Alternations of dominant fish groups occurred 6 times between 1910 and 2008. The dominant period of the 7 species lasted for 10-20 years. The catch of Pacific sardine in the TWC and KOC regions showed a negative correlation with the catch of the other 5 species (Pacific herring, anchovy, jack mackerel, Pacific saury, and common squid), suggesting that the abundance of the 5 species is strongly affected by the abundance of Pacific sardine in relation to the climate regime shifts. The total catch level of the 7 species in the KOC region was generally higher than that in the TWC region before 1991 but was lower after 1992, suggesting that the fish populations in the Pacific side are shifted to the TWC region by zonal oscillation of the oceanic conditions in relation to the climate regime shift in the late 1980s.

A correlation between moisture and compressive strength of a damaged 15-year-old rammed soil house

  • Preciado, Adolfo;Santos, Juan Carlos;Ramirez-Gaytan, Alejandro;Ayala, Karla;Garcia, Jose de Jesus
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.227-244
    • /
    • 2020
  • Earthen structures have an excellent bioclimatic performance, but they are vulnerable against earthquakes. In order to investigate the edification process and costs, a full-scale rammed soil house was constructed in 2004. In 2016-2019, it was studied its seismic damage, durability and degradation process. During 2004-2016, the house presented a relatively good seismic performance (Mw=5.6-6.4). The damaged cover contributed in the fast deterioration of walls. In 2018 it was observed a partial collapse of one wall due to recent seismicity (Mw=5.6-6.1). The 15-year-old samples presented a reduced compressive strength (0.040 MPa) and a minimum moisture (1.38%). It is estimated that the existing house has approximately a remaining 20% of compressive strength with a degradation of about 5.4% (0.0109 MPa) per year (considering a time frame of 15 years) if compared to the new soil samples (0.2028 MPa, 3.52% of moisture). This correlation between moisture and compressive strength degradation was compared with the study of new soil samples at the same construction site and compared against the extracted samples from the 15-year-old house. At 7-14-days, the specimens presented a similar compressive strength as the degraded ones, but different moisture. Conversely, the 60-days specimens shown almost five times more strength as the existing samples for a similar moisture. It was observed in new rammed soil that the lower the water content, the higher the compressive/shear strength.