• 제목/요약/키워드: Collapse probability

검색결과 145건 처리시간 0.029초

Seismic performance of low-rise reinforced concrete moment frames under carbonation corrosion

  • Vaezi, Hossein;Karimi, Amir;Shayanfar, Mohsenali;Safiey, Amir
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.215-224
    • /
    • 2021
  • The carbon dioxide present in the atmosphere is one of the main reasons for the corrosion of bridges, buildings, tunnels, and other reinforced concrete (RC) structures in most industrialized countries. With the growing use of fossil fuels in the world since the Industrial Revolution, the amount of carbon dioxide in urban and industrial areas of the world has grown significantly, which increases the chance of corrosion caused by carbonation. The process of corrosion leads to a change in mechanical properties of rebars and concrete, and consequently, detrimentally impacting load-bearing capacity and seismic behavior of RC structures. Neglecting this phenomenon can trigger misleading results in the form of underestimating the seismic performance metrics. Therefore, studying the carbonation corrosion influence on the seismic behavior of RC structures in urban and industrial areas is of great significance. In this study, a 2D modern RC moment frame is developed to study and assess the effect of carbonation corrosion, in 5-year intervals, for a 50 years lifetime under two different environmental conditions. This is achieved using the nonlinear static and incremental dynamic analysis (IDA) to evaluate the reinforcement corrosion effects. The reduction in the seismic capacity and performance of the reinforced concrete frame, as well as the collapse probability over the lifetime for different corrosion scenarios, is examined through the capacity curves obtained from nonlinear static analysis and the fragility curves obtained from IDA.

Seismic analysis of high-rise steel frame building considering irregularities in plan and elevation

  • Mohammadzadeh, Behzad;Kang, Junsuk
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.65-80
    • /
    • 2021
  • Irregularities of a building in plan and elevation, which results in the change in stiffness on different floors highly affect the seismic performance and resistance of a structure. This study motivated to investigate the seismic responses of high-rise steel-frame buildings of twelve stories with various stiffness irregularities. The building has five spans of 3200 mm distance in both X- and Z-directions in the plan. The design package SAP2000 was adopted for the design of beams and columns and resulted in the profile IPE500 for the beams of all floors and box sections for columns. The column cross-section dimensions vary concerning the number of the story; one to three: 0.50×0.50×0.05m, four to seven: 0.45×0.45×0.05 m, and eight to twelve: 0.40×0.40×0.05 m. Real recorded ground accelerations obtained from the Vrancea earthquake in Romania together with dead and live loads corresponding to each story were considered for the applied load. The model was validated by comparing the results of the current method and literature considering a three-bay steel moment-resisting frame of eight-story height subject to seismic load. To investigate the seismic performance of the buildings, the time-history analysis was performed using ABAQUS. Deformed shapes corresponding to negative and positive peaks were provided followed by the story drifts and fragility curves which were used to examine the probability of collapse of the building. From the results, it was concluded that regular buildings provided a seismic performance much better than irregular buildings. Furthermore, it was observed that building with torsional irregularity was more vulnerable to seismic failure.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

Nonlinear incremental dynamic analysis and fragility curves of tall steel buildings with buckling restrained braces and tuned mass dampers

  • Verki, Amir Masoumi;Preciado, Adolfo
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.169-184
    • /
    • 2022
  • The importance of seismicity in developing countries and the strengthening of buildings is a topic of major importance. Therefore, the study of several solutions with the development of new technologies is of great importance to investigate the damage on retrofitted structures by using probabilistic methods. The Federal Emergency Management Agency considers three types of performance levels by considering different scenarios, intensity and duration. The selection and scaling of ground motions mainly depends on the aim of the study. Intensity-based assessments are the most common and compute the response of buildings for a specified seismic intensity. Assessments based on scenarios estimate the response of buildings to different earthquake scenarios. A risk-based assessment is considered as one of the most effective. This research represents a practical method for developing countries where exists many active faults, tall buildings and lack of good implementable approaches. Therefore, to achieve the main goal, two high-rise steel buildings have been modeled and assessed. The contribution of buckling-restrained braces in the elastic design of both buildings is firstly verified. In the nonlinear static range, both buildings presented repairable damage at the central top part and some life safety hinges at the bottom. The nonlinear incremental dynamic analysis was applied by 15 representative/scaled accelerograms to obtain levels of performance and fragility curves. The results shown that by using probabilistic methods, it is possible to estimate the probability of collapse of retrofitted buildings by buckling-restrained braces and tuned mass dampers, which are practical retrofitting options to protect existing structures against earthquakes.

글로벌 가치사슬의 붕괴에 어떻게 대응해야 하는가? 분열적 상황의 심층규명과 중소기업의 위험관리 전략에 관한 연구 (How Should We Respond to the Collapse of the Global Value Chain? An In-Depth Investigation of Disruptive Events and Risk Management Strategies in SMEs)

  • 권세인;양종곤
    • 융합정보논문지
    • /
    • 제12권5호
    • /
    • pp.107-115
    • /
    • 2022
  • 본 연구는 공급사슬 취약성의 동인과 내·외부 분열적 상황을 규명하고 공급사슬 위험관리가 성과 피해를 완화하는 조절효과를 검증하는 것을 목적으로 한다. 182개 중소기업을 대상으로 한 분석결과는 다음과 같다. 첫째, 공급사슬 취약성은 글로벌화, 제품 다양화 등 기업의 과도한 효율성에서 비롯되었음을 확인하였다. 둘째, 외부 환경적 분열요인보다 내부요인의 발생 가능성과 심각성이 더욱 높게 나타났다. 특히, 기업 내부의 가치사슬보다는 기업 간 공급사슬 프로세스에서 발생하는 위험의 대응 우선순위가 높았다. 마지막으로 공급사슬 위험관리의 수준이 높을수록 성과 피해를 긍정적으로 완화하는 조절효과가 나타났다. 본 연구는 공급사슬 위험에 대응하는 기업실무자와 정책 입안자의 의사결정에 실행적 단서를 제공하는 것에 가치가 있다.

The development of the seismic fragility curves of existing bridges in Indonesia (Case study: DKI Jakarta)

  • Veby Citra Simanjuntak;Iswandi Imran;Muslinang Moestopo;Herlien D. Setio
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.87-105
    • /
    • 2023
  • Seismic regulations have been updated from time to time to accommodate an increase in seismic hazards. Comparison of seismic fragility of the existing bridges in Indonesia from different historical periods since the era before 1990 will be the basis for seismic assessment of the bridge stock in Indonesia, most of which are located in earthquake-prone areas, especially those built many years ago with outdated regulations. In this study, seismic fragility curves were developed using incremental non-linear time history analysis and more holistically according to the actual strength of concrete and steel material in Indonesia to determine the uncertainty factor of structural capacity, βc. From the research that has been carried out, based on the current seismic load in SNI 2833:2016/Seismic Map 2017 (7% probability of exceedance in 75 years), the performance level of the bridge in the era before SNI 2833:2016 was Operational-Life Safety whereas the performance level of the bridge designed with SNI 2833:2016 was Elastic - Operational. The potential for more severe damage occurs in greater earthquake intensity. Collapse condition occurs at As = FPGA x PGA value of bridge Era I = 0.93 g; Era II = 1.03 g; Era III = 1.22 g; Era IV = 1.54 g. Furthermore, the fragility analysis was also developed with geometric variations in the same bridge class to see the effect of these variations on the fragility, which is the basis for making bridge risk maps in Indonesia.

과로로 인한 업무상 질병의 산재보상 인정기준에 관한 연구 (A Study on the Clauses of the Work-Related Disease due to Overwork in the Workmen's Compensation Law)

  • 김은희
    • 한국직업건강간호학회지
    • /
    • 제6권1호
    • /
    • pp.23-43
    • /
    • 1997
  • The work-related diseases due to continuous overwork are mainly cerebro- and cardio-vascular ones, which is commonly called 'Karoshi', death from overwork. Many factors are capable for Karoshi : occupational stress in relation to technological renovation and industrial rationalization, competitive social structure, and accumulated fatigue accured to long time or irregular working. And its occurence is on the rise. The World Labor Report 1993 released by ILO, pointed out the diseases related to overwork and stress as one of the most important occupational health problem. In Korea, social awareness of Karoshi is at an infant stage, and reliable statistics for its occurence are not compiled in a convenient manner. Despite the rising Karoshi, there are no reliable clauses in workmen's compensation enough to settle down the disputes. Therefore, it is not uncommon that the Labour Ministry and Civil Court find difficulties in reaching an agreement. This study was intended to provide proper compensation and prevention program for workers by suggesting reasonable compensation clauses for the death from overwork. This study consists of two comparative reviews on the compensaton clauses for the death from overwork. One is to review legal standards of Karoshi among three countries, such as Korea, Japan and Taiwan. The other is to investigate the cases of Karoshi in Korea, 121 cases identified at the Labor Welfare Corperation and the Labour Ministrial process of examination and reexamination, and 73 leading cases at the High Court of Justice. The main findings of the study are as follows : 1. Comparisons of comperative review on compensation clauses for the death from overwork among three countries. 1) All of three countries have the same kinds of disease for compensation, which were cerebro-and cardiao-vascular diseases, while for cardiac disease group, Korea has the smaller number of diseases for compensation than Japan. 2) As for the definition of overwork, the three countries share equally that overload for one week prior to collapse is considered as an important factor, but accumulated chronic fatigue is disregarded. 3) As the basis of overwork, in Japan, there is a tendency to move from the conditions of an ordinary healthy adult to those of the individual concerned in Japan, whereas there is no such concern yet in Korea. 4) All the three countries use a common standard of medical judgement in demonstrating causal relationship between a job and a disease. However, Korea is progressive in the sense that in the case of CVA at worksite, the worker himself has no obligation to prove the cause. 2. The results of a comparative review on excutive decisions by Labor Ministry and judicial decisions by the Court in Korea : A judicial decision is based on the legalistic probability, but a excutive decision is not. Therefore, excutive decisions have such restrictions that : 1) TIA (transitory ischemic cerebral attack) and myocarditis are excluded from compensation, and there is little consistency of decision in the case of cause-unknown death. 2) There is a tendency not to compensate for the death from overwork since the work terms such as repeated long-time working, shift work or night-shift work are not considered as overloading. 3) There is a tendency to regard the conditions of a ordinary healthy adult rather than those of the individual concerned(age, existing diseases, health state, etc.) as the comparative basis of overload. 4) There remains a tendency not to compensate for the death from overwork in the case of collapse occuring out of workplace, on the ground of 'on the course of working' and 'in the cause of accident'. Through the study, the fact manifests itself that Korea's compensation clauses for work-related diseases due to overwork are very restrictive. So, it is necessary to extend the Labor Ministry's clauses of compensation for the death from overwork following to the recent changes of other countries and internal judicial decisions. This is very important in the perspective of occupational health that aims at health promotion of workers including prevention of the Karoshi.

  • PDF

우주감시를 위한 L-Band 위상배열레이다 시스템 설계 (Design of L-Band-Phased Array Radar System for Space Situational Awareness)

  • 이종현;최은정;문현욱;박준태;조성기;박장현;조중현
    • 한국전자파학회논문지
    • /
    • 제29권3호
    • /
    • pp.214-224
    • /
    • 2018
  • 지속적인 우주개발은 인공위성의 지구 추락, 우주잔해물과 우주선 간의 충돌 등 우주위험의 발생 가능성을 크게 증가 시킨다. 국내에서는 이러한 우주위험을 감시하기 위한 광학감시체계 구축은 진행하였으나, 독자적인 상시 우주감시 정보 획득 능력을 갖는 우주감시 레이다기술에 대해서는 확보가 필요한 실정이다. 본 논문에서는 재진입하는 우주물체의 추락 위험 및 저궤도 자국 위성의 충돌 위험에 대응하기 위한 우주감시 임무 분석 및 레이다 요구사항 도출을 통해, 우주물체의 탐지 및 추적을 위한 L-band 위상배열레이다 시스템을 제안한다. 우주감시 임무 분석 및 미국, 유럽 등 해외 선진 시스템의 사례 분석을 바탕으로 레이다 고려사항을 정의하고 레이다를 설계하였으며, 지름 10 cm 우주 파편에 대해 최대탐지거리 1,576 km를 가질 뿐, 아니라 탐지 범위 분석을 통해 국내 운용 중인 인공위성에 대해 우주감시 임무 수행이 가능함을 확인하였다.

차량 충돌하중을 받는 RC 압축부재의 성능기반형 저항성능 평가방법 개발 (Development of Performance Based Resistance Capacity Evaluation Method for RC Compression Member under Vehicle Impact Load)

  • 김장호;이나현;판덕헝;김성배;이강원
    • 콘크리트학회논문집
    • /
    • 제22권4호
    • /
    • pp.535-546
    • /
    • 2010
  • 최근 교량구조물의 증가와 더불어 차량 및 선박과 시설물 간의 충돌사고가 발생할 확률이 높아지고 있다. 특히 교량을 구성하는 상부구조와 하부구조 중에서 충돌에 의한 영향은 주로 교각 등의 하부구조가 받을 가능성이 크다. 교각에 차량 혹은 선박이 충돌하게 되면 교량 하부구조에 국부적인 손상을 유발하게 되며, 충돌사고는 훨씬 더 순간적이고 강한 물리적인 질량의 충돌을 동반할 수 있으며, 극단적인 경우 상부구조의 붕괴까지 유발할 수 있다. 그러므로 이 연구에서는 콘크리트 구조물인 교량의 교각과 같은 압축부재에 대한 설계 시 차량 등에 의한 충돌을 고려하고, 차량 충돌하중에 의한 손상지수를 정량적으로 평가하기 위해서 기존의 설계방법을 개선하고 새로운 구조물의 저항성능 평가방법을 정립하기 위하여 동적유한요소해석 프로그램인 LS-DYNA를 이용하여 교각단면, 차량의 충돌각에 따른 충격도, 축력 및 축력비, 콘크리트 강도, 주철근비와 횡방향 철근, 세장비 등을 변화시켜 케이스별 해석을 수행하였다. 이 연구 결과를 통해 콘크리트 구조물의 거동해석 및 설계기법을 Bayesian 통계방법을 이용한 만족도 곡선을 통해 충격하중을 받을 시의 성능 기반형 저항성능 평가방법을 개발하였으며, 이는 실제 충격하중에 의한 구조물의 방호성능 및 설계 시에 적절하게 적용할 수 있을 것으로 판단된다.

신뢰도 기반 교량 안전성 평가를 위한 구조신뢰성 해석 플랫폼 FERUM-MIDAS의 개발 (Development of Structural Reliability Analysis Platform of FERUM-MIDAS for Reliability-Based Safety Evaluation of Bridges)

  • 이승준;이영주
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.884-891
    • /
    • 2020
  • 교량은 현대 사회에서 중요한 사회기반시설물 중에 하나로 교량의 붕괴는 막대한 인명 피해와 경제적 손실을 일으킬 수 있다. 따라서 교량의 구조적 안전성을 평가하는 것은 매우 중요하며, 이를 위해 교량을 둘러싼 여러 종류의 불확실성 요인들을 고려하는 구조신뢰성 해석이 흔히 사용된다. 본 연구에서는 다양한 하중 조건에서 교량의 안전성을 평가하기 위한 새로운 구조신뢰성 해석 플랫폼을 제안한다. 제안 플랫폼 FERUM-MIDAS는 신뢰성 해석 소프트웨어인 Finite Element Reliability Using MATLAB(FERUM)과 교량 설계/해석에 특화된 상용 소프트웨어인 MIDAS/CIVIL을 연결하여, 자동적인 입출력 데이터 교환을 통해서 구조신뢰성 해석을 수행한다. 나아가 MIDAS/CIVIL의 그래픽 사용자 인터페이스로만 소프트웨어 구동이 가능한 한계점을 극복하기 위하여 FERUM에 별도의 그래픽 사용자 인터페이스 제어 모듈을 추가하였다. 본 연구에서는 제안 플랫폼을 간단한 프레임 예제에 적용하여 대표적인 신뢰성 해석 방법인 FORM(First-Order Reliability Method)과 MCS(Monte Carlo simulation)의 해석 결과를 비교·분석하였으며, 계산된 파괴확률 차이가 5% 미만인 것을 확인하여 제안 플랫폼의 검증을 완료하였다. 이와 더불어 개발된 플랫폼을 활용하여 KL-510 활하중 모델을 고려한 프리스트레스트 콘크리트(pre-stressed concrete, PSC)교의 파괴확률과 신뢰도 지수를 도출하고, 그 결과를 분석하여 교량의 구조적 안전성을 평가하였다. 본 연구에서 제안한 새로운 구조신뢰성 해석 플랫폼을 통해 교량의 효과적인 신뢰도 기반 안전성 평가가 가능할 것으로 기대된다.