• Title/Summary/Keyword: Collapse mode

Search Result 191, Processing Time 0.028 seconds

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

Punching performance of RC slab-column connections with inner steel truss

  • Shi, Qingxuan;Ma, Ge;Guo, Jiangran;Ma, Chenchen
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.195-204
    • /
    • 2022
  • As a brittle failure mode, punching-shear failure can be widely found in traditional RC slab-column connections, which may lead to the entire collapse of a flat plate structure. In this paper, a novel RC slab-column connection with inner steel truss was proposed to enhance the punching strength. In the proposed connection, steel trusses, each of which was composed of four steel angles and a series of steel strips, were pre-assembled at the periphery of the column capital and behaved as transverse reinforcements. With the aim of exploring the punching behavior of this novel RC slab-column connection, a static punching test was conducted on two full-scaled RC slab specimens, and the crack patterns, failure modes, load-deflection and load-strain responses were thoroughly analyzed to explore the contribution of the applied inner steel trusses to the overall punching behavior. The test results indicated that all the test specimens suffered the typical punching-shear failure, and the higher punching strength and initial stiffness could be found in the specimen with inner steel trusses. The numerical models of tested specimens were analyzed in ABAQUS. These models were verified by comparing the results of the tests with the results of the analyzes, and subsequently the sensitivity of the punching capacity to different parameters was studied. Based on the test results, a modified critical shear crack theory, which could take the contribution of the steel trusses into account, was put forward to predict the punching strength of this novel RC slab-column connection, and the calculated results agreed well with the test results.

Toward the Cultural Approach to the Discipline of Korean Design History: -A Plea for the Domestic Handcrafts of Yang, Gap-Jo- (한국디자인사 연구의 문화사적 접근을 향하여 -양갑조 할머니의 규방 공예품을 위한 변론-)

  • Ko, Young-Lan
    • Archives of design research
    • /
    • v.17 no.4
    • /
    • pp.375-384
    • /
    • 2004
  • The general tendency of approach to Korean Design History has been focusing its primary interest on the grand story in relation to the problems of modernization in political, economical and social aspects of Korea. In the discourse of modernization, however, there are two sides immanent in the modernization: there is the formal, institutional and authoritative modernization developed inside the capitalistic mode of production and the informal, individual and cultural modernization manifested in the mode of everyday lives. Especially, despite the viewpoint of the latter being embossed as an alternative approach in various areas including the academic world of history since the collapse of socialism, the historical recognition of the phenomena of modern design by the Korean design historians is more like the 'history from the above' that exists at the level of the discourse outside the reality rather than the 'history from the below' that exists within the ordinary life. To grant a sense of balance in such frame of historical understanding, it requires the restructuring the design history of Korea through the cultural perspectives from having the representation of mundane lives realized by the voluntary design activity of the common people as research subjects. One of the methods to acquire an answer to such problem is decoding, in the manner of 'cultural history', the life-long domestic artifact made by Madame Yang, Gap Jo (currently 87 years of age) who is a model of typical Korean mother. Through the historical rumination on the traces of unpretentious lives of the people that has been buried under the grand narrative of the Korean Design History, a new era aimed for the historical prospect of Korean design as cultural history will be possible by excavating the petit yet multi-layered meaning of Korean designs.

  • PDF

A Design of Secure Electronic Health Information Management Protocol in the Internet of Things Environment (사물 인터넷 환경에서 안전한 전자의료정보 관리 프로토콜 설계)

  • Park, Jeong Hyo;Kim, Nak Hyun;Jung, Yong Hoon;Jun, Moon Seog
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.323-328
    • /
    • 2014
  • ZigBee based on the most vulnerable part of u-Healthcare system that uses the ZigBee communication is the wireless section. ZigBee communication sectors to identify vulnerabilities in this paper, we propose to compensate. ZigBee has been raised from the existing vulnerabilities organize and ZigBee also uses the 64bit address that uniquely identifies a vulnerability that was defined as exposure. And to prevent the exposure of a unique identifying address was used to address a temporary identification. ZigBee security services, the proposed system during the Network Key for encryption only use one mechanism of Residential Mode is used. Residential Mode on all nodes of the entire network because they use a common key, the key is stolen, your network's security system at a time are at risk of collapse. Therefore, in order to guard against these risks to the security policy Network Key updated periodically depending on the method used to. The proposed evaluation and comparative analysis of the system were exposed in the existing system can hide the address that uniquely identifies a public key Network Key also updated periodically, so that leaks can occur due to reduced risk.

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny;Hidalgo, Juan P.;Lange, David;Cowlard, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.345-364
    • /
    • 2021
  • Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

Experimental and Numerical Studies on Composite Tubes for the Energy Absorber of High-speed Train (복합재 튜브를 이용한 고속 열차의 에너지 흡수장치에 대한 실험 및 수치해석 연구)

  • Nguyen, Cao-Son;Jang, Hong-Kyu;Shin, Jae-Hwan;Son, Yu-Na;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • This paper presents an experimental and numerical study on composite tubes for the energy absorber of the high-speed train. The purpose of the experimental study is to find out which lay-up is the best lay-up for the energy absorber. Four lay-ups were tested using quasi static method: $[0/45/90/-45]_4$, $[0]_{16}$, $[0/90]_8$, $[0/30/-30]_5$. Two triggering methods were used to create initial damage and guarantee the progressive collapse mode: bevel edge and notch edge. As a result, $[0/45/90/-45]_4$ lay-up was find out the best lay-up among the laminates being tested. In the numerical study, a parametric analysis was done to find out the most proper way to simulate the quasi static test of a composite tube using LS-DYNA program. A single composite tube was modeled to be crashed by a moving wall. Comparison between simulation and experiment was done. Reasonable agreement between experiment and analysis was obtained. Dealing with parameter TFAIL and the mass scaling factor, this parametric study shows the ability and the limitation of LS-DYNA in modeling the quasi static test for the composite tube.

Development of distributed inundation routing method using SIMOD method (SIMOD 기법을 이용한 분포형 침수 추적 기법 개발)

  • Lee, Suk Ho;Lee, Dong Seop;Kim, Jin Man;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.579-588
    • /
    • 2016
  • Changes in precipitation due to climate change is made to induce the local and intensive rainfall, it is increasing damage caused by inland inundation. Therefore, it requires a technique for predicting damage caused by flooding. In this study, in order to determine whether this flood inundated by any route when the levee was destroyed, Which can simulate the path of the flood inundation model was developed for the SIMOD (Simplified Inundation MODel). Multi Direction Method (MDM) for differential distributing the adjacent cells by using the slope and Flat-Water Assumption (FWA)-If more than one level higher in the cell adjacent to the cell level is the lowest altitude that increases the water level is equal to the adjacent cells- were applied For the evaluation of the model by setting the flooding scenarios were estimated hourly range from the target area. SIMOD model can significantly reduce simulation time because they use a simple input data of topography (DEM) and inflow flood. Since it is possible to predict results within minutes, if you can only identify inflow flood through the runoff model or levee collapse model. Therefore, it could be used to establish an evacuation plan due to flooding, such as EAP (Emergency Action Plan).

Identification of Failure Cause for Elastomeric Bearing in Bridge by Earthquakes (지진에 의한 교량의 탄성받침장치 손상 원인 규명)

  • Seo, Young-Deuk;Choi, Hyoung-Suk;Kim, In-Tae;Kim, Jung Han;Jeong, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The seismic isolation system have been applied in order to protect the collapse of bridge by seismic load and the vertical load transmitted from the superstructure. However, the failure and damages of non-shrinkage mortar, isolator and wedge in total 12 bridge were reported by Pohang Earthquake. In this study, the damage mechanism and behavior characteristics of elastomeric bearing by an earthquake were evaluated to consider the seismic isolation system including non-shrinkage mortar and the seat concrete of pier. To discuss the effect of installed wedge and damage mode of elastomeric bearing, the compressive-shear tests were carried out. Also, the mechanical behaviors and damage mechanism for each component of elastomeric bearing were evaluated by using finite element analysis. From the test results, the cracks were created at boundary between non-shrinkage mortar and seismic isolator and the shear loads were rapidly increased after bump into wedge. The cause for damage mechanism of seismic isolation system was investigated by comparing stress distribution of anchor socket and non-shrinkage mortar depending on wedge during earthquake.