• Title/Summary/Keyword: Collapse mode

Search Result 192, Processing Time 0.029 seconds

Stress resultant model for ultimate load design of reinforced-concrete frames: combined axial force and bending moment

  • Pham, Ba-Hung;Davenne, Luc;Brancherie, Delphine;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.303-315
    • /
    • 2010
  • In this paper, we present a new finite Timoshenko beam element with a model for ultimate load computation of reinforced concrete frames. The proposed model combines the descriptions of the diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or collapse of the concrete and or the re-bars. A modified multi-scale analysis is performed in order to identify the parameters for stress-resultant-based macro model, which is used to described the behavior of the Timoshenko beam element. The micro-scale is described by using the multi-fiber elements with embedded strain discontinuities in mode 1, which would typically be triggered by bending failure mode. A special attention is paid to the influence of the axial force on the bending moment - rotation response, especially for the columns behavior computation.

Analysis of Keyhole Formation and Stability in Laser Spot Welding (레이저 점 용접의 키홀 발생과 안정성에 대한 해석)

  • 고성훈;이재영;유중돈
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.484-490
    • /
    • 2002
  • The formation and stability of stationary laser weld keyholes were investigated using a numerical simulation. The effect of multiple reflections in the keyhole was estimated using the ray tracing method, and the free surface profile, flow velocity and temperature distribution were calculated numerically. In the simulation, the keyhole was formed by the displacement of the melt induced by evaporation recoil pressure, while surface tension and hydrostatic pressure opposed cavity formation. A transition mode having the geometry of the conduction mode with keyhole formation occurred between the conduction and keyhole modes. At laser powers of 500W and greater, the protrusion occurred on the keyhole wall, which resulted in keyhole collapse and void formation at the bottom. Initiation of the protrusion was caused mainly by collision of upward and downward flows due to the pressure components, and Marangoni flow had minor effects on the flow patterns and keyhole stability.bility.

Voltage Stability Analysis of AC/DC Systems (AC/DC 계통의 전압안정도 해석)

  • Nam, Hae-Kon;Kim, Yong-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.89-91
    • /
    • 1995
  • This paper describes an extension or a pair or multiple load flow solutions and nose curve method developed for voltage stability analysis or AC power systems to AC/DC systems. In this approach the converters are regarded as voltage dependent loads. Assuming that the converters at the unstable (-mode) solution consume the same power equal to the power at the stable (+mode) solution, the unstable solutions or the nose curves arc determined. This method is very efficient since estimating voltage collapse point and voltage stability margin arc determined by a few iterations of multiple load flow solutions. Also the method has the advantages that since the structure or Jacobian matrix is same with that of AC load flow, modal analysis or voltage stability is readily applicable if desired.

  • PDF

Three dimensional modelling of ancient colonnade structural systems subjected to harmonic and seismic loading

  • Sarhosis, V.;Asteris, P.G.;Mohebkhah, A.;Xiao, J.;Wang, T.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.633-653
    • /
    • 2016
  • One of the major threats to the stability of classical columns and colonnades are earthquakes. The behavior of columns under high seismic excitation loads is non-linear and complex since rocking, wobbling and sliding failure modes can occur. Therefore, three dimensional simulation approaches are essential to investigate the in-plane and out-of-plane response of such structures during harmonic and seismic loading excitations. Using a software based on the Distinct Element Method (DEM) of analysis, a three dimensional numerical study has been performed to investigate the parameters affecting the seismic behaviour of colonnades' structural systems. A typical section of the two-storey colonnade of the Forum in Pompeii has been modelled and studied parametrically, in order to identify the main factors affecting the stability and to improve our understanding of the earthquake behaviour of such structures. The model is then used to compare the results between 2D and 3D simulations emphasizing the different response for the selected earthquake records. From the results analysis, it was found that the high-frequency motion requires large base acceleration amplitude to lead to the collapse of the colonnade in a shear-slip mode between the drums. However, low-frequency harmonic excitations are more prominent to cause structural collapse of the two-storey colonnade than the high-frequency ones with predominant rocking failure mode. Finally, the 2D analysis found to be unconservative since underestimates the displacement demands of the colonnade system when compared with the 3D analysis.

The seismic reliability of two connected SMRF structures

  • Aval, Seyed Bahram Beheshti;Farrokhi, Amir;Fallah, Ahmad;Tsouvalas, Apostolos
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.151-164
    • /
    • 2017
  • This article aims to investigate the possible retrofitting of a deficient building with soft story failure mode by connecting it to an adjacent building which is designed based on current code with friction dampers at all floors. Low cost and high performance reliability along with significant energy dissipation pertaining to stable hysteretic loops may be considered in order to choose the proper damper for connecting adjacent buildings. After connecting two neighbouring floors by friction dampers, the sliding forces of dampers at various stories are set in two arrangements: uniform sliding force and then variable sliding force. In order to account for the stochastic nature of the seismic events, incremental dynamic analyses are employed prior and after the installation of the friction dampers at the various floors. Based on these results, fragility curves and mean annual rate of exceedance of serviceability and ultimate limit states are obtained. The results of this study show that the collapse mode of the deficient building can affect the optimum arrangement of sliding forces of friction dampers at Collapse Prevention (CP) performance level. In particular, the Immediate Occupancy (IO) performance level is not tangible to the sliding force arrangement and it depends solely on sliding force value. Generally it can be claimed that this rehabilitation scheme can turn the challenge of pounding two adjacent buildings into the opportunity of dissipating a large amount of the seismic input energy by the friction dampers, thus improving significantly the poor seismic performance of the deficient structure.

Experimental studies on behaviour of tubular T-joints reinforced with grouted sleeve

  • Jiang, Shouchao;Guo, Xiaonong;Xiong, Zhe;Cai, Yufang;Zhu, Shaojun
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.585-596
    • /
    • 2017
  • Tubular joints have been widely used in offshore platforms and space structures due to their merits such as easy fabrication, aesthetic appearance and better static strength. For existing tubular joints, a grouted sleeve reinforced method was proposed in this paper. Experimental tests on five tubular T-joints reinforced with the grouted sleeve and two conventional tubular T-joints were conducted to investigate their mechanical behaviour. A constant axial compressive force was applied to the chord end to simulate the compressive state of the chord member during the tests. Then an axial compressive force was applied to the top end of the brace member until the collapse of the joint specimens occurred. The parameters investigated herein were the grout thickness, the sleeve length coefficient and the sleeve construction method. The failure mode, ultimate load, initial stiffness and deformability of these joint specimens were discussed. It was found that: (1) The grouted sleeve could change the failure mode of tubular T-joints. (2) The grouted sleeve was observed to provide strength enhancement up to 154.3%~172.7% for the corresponding un-reinforced joint. (3) The initial stiffness and deformability were also greatly improved by the grouted sleeve. (4) The sleeve length coefficient was a key parameter for the improved effect of the grouted sleeve reinforced method.

Damage identification of belt conveyor support structure using periodic and isolated local vibration modes

  • Hornarbakhsh, Amin;Nagayama, Tomonori;Rana, Shohel;Tominaga, Tomonori;Hisazumi, Kazumasa;Kanno, Ryoichi
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.787-806
    • /
    • 2015
  • Due to corrosion, a large number of belt conveyors support structure in industrial plants have deteriorated. Severe corrosion may result in collapse of the structures. Therefore, practical and effective structural assessment techniques are needed. In this paper, damage identification methods based on two specific local vibration modes, named periodic and isolated local vibration modes, are proposed. The identification methods utilize the facts that support structures have many identical members repeated along the belt conveyor and there exist some local modes within a small frequency range where vibrations of these identical members are much larger than those of the other members. When one of these identical members is damaged, this member no longer vibrates in those modes. Instead, the member vibrates alone in an isolated mode with a lower frequency. A damage identification method based on frequencies comparison of these vibration modes and another method based on amplitude comparison of the periodic local vibration mode are explained. These methods do not require the baseline measurement records of undamaged structure. The methods is capable of detecting multiple damages simultaneously. The applicability of the methods is experimentally validated with a laboratory model and a real belt-conveyor support structure.

Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement (콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.

Effect of crack location on buckling analysis and SIF of cracked plates under tension

  • Memarzadeh, Parham;Mousavian, Sayedmohammad;Ghehi, Mohammad Hosseini;Zirakian, Tadeh
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.215-235
    • /
    • 2020
  • Cracks and defects may occur anywhere in a plate under tension. Cracks can affect the buckling stability performance and even the failure mode of the plate. A search of the literature reveals that the reported research has mostly focused on the study of plates with central and small cracks. Considering the effectiveness of cracks on the buckling behavior of plates, this study intends to investigate the effects of some key parameters, i.e., crack size and location as well as the plate aspect ratio and support conditions, on the buckling behavior, stress intensity factor (SIF), and the failure mode (buckling or fracture) in cracked plates under tension. To this end, a sophisticated mathematical code was developed using MATLAB in the frame-work of extended finite element method (XFEM) in order to analyze the buckling stability and collapse of numerous plate models. The results and findings of this research endeavor show that, in addition to the plate aspect ratio and support conditions, careful consideration of the crack location and size can be quite effective in buckling behavior assessment and failure mode prediction as well as SIF evaluation of the cracked plates subjected to tensile loading.

Displacement-based design method for an energy-dissipation self-centering wall panel structure

  • Sisi Chao;Guanqi Lan;Hua Huang;Huiping Liu;Chenghua Li
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.289-304
    • /
    • 2024
  • The seismic performance of traditional steel frame-shear wall structures was significantly improved by the application of self-centering steel-reinforced concrete (SRC) wall-panel structures in the steel frames. This novel resilience functionality can rapidly restore the structure after an earthquake. The presented steel frame with steel-reinforced concrete self-centering wall-panel structures (SF-SCW) was validated, indicating its excellent seismic performance. The seismic design method based on bear capacity cannot correctly predict the elastic-plastic performance of the structure, especially certain weak floors that might be caused by a major fracture. A four-level seismic performance index, including intact function, continued utilization, life safety, and near-collapse, was established to achieve the ideal failure mode. The seismic design method, based on structural displacement, was proposed by considering performance objectives of the different seismic action levels. The pushover analysis of a six-floor SF-SCW structure was carried out under the proposed design method and the results showed that this six-floor structure could achieve the predicted failure mode.