• Title/Summary/Keyword: Collapse Moment

Search Result 242, Processing Time 0.028 seconds

Elasto-Plastic F.E. Analysis of Plane Framed Structures including Large Deformation Effects (대변형(大變形) 효과(效果)를 고려(考慮)한 평면(平面)뼈대 구조물(構造物)의 탄(彈)-소성(塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Yoo, Soon Jae;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.105-117
    • /
    • 1994
  • A finite element procedure which can trace plastic collapse behavior of plane frame structures under small and large deformation is presented. The member is assumed to be prismatic and straight, and has the rectangular or I cross section. For the elasto-plastic analysis, the concept of plastic hinge is introduced and the incremental displacement method is applied. The limit state condition of the plastic hinge is considered under the combined condition of a bending moment and an axial force. Numerical examples are presented in order to demonstrate the validity and efficiency of the proposed procedure.

  • PDF

A Study on Flexural Ductility of Longitudinally Stiffened Plate Girders (수평보강재가 설치된 플레이트 거더의 휨 연성에 관한 연구)

  • Yoon, Dong Yong;Kim, Kyung Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.643-653
    • /
    • 2007
  • The ultimate bending strength and flexural ductility performance of longitudinally stiffened plate girders fabricated with mild steel were investigated utilizing nonlinear incremental finite element analysis. AASHTO LRFD (2002) design specifications were reviewed for possible application of longitudinally stiffened plate girders as compact sections. In order to investigate compact section requirements for plate girders with longitudinal stiffeners in webs, a number of full-scale plate girders were modeled and analyzed up to the collapse under pure bending condition. It was found that the slenderness of sub panel of the webs, the stiffness of longitudinal stiffeners, and the slenderness of compression flanges are key parameters governing the flexural ductility of the plate girders. It was also found from finite element analysis that longitudinally stiffened plate girder sections can satisfy compact section requirements both in full plastic moment capacity and flexural ductility requirement. New design equations have been proposed for longitudinally stiffened plate girders to be treated as compact sections.

Inelastic Cyclic Behavior of Locally Buckled Steel Members (국부좌굴된 강구조부재의 비탄성 반복 거동)

  • Lee, Eun Taik;Song, Keum Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.139-149
    • /
    • 2005
  • Post-local buckling behavior is a very important consideration in plastic and seismic design of steel structures. It describes the structural behavior up to the final collapse state. In order to assess the actual reliability of structures under severe repeated loading, such as strong earthquakes, it is necessary to evaluate the progressive cyclic deterioration of stiffness as well as the strength and energy dissipation capacity of the structures after local buckling happens. In this study, a simple analytical model developed for predicting post-local buckling behavior for cyclic and non-proportional loading histories, has been proposed. This analytical model uses the stress resultant model based on the two surface model. Analytical moment-curvature relationship using this model compare well with the experimental results in constant amplitude cycling, and linearized energy deterioration which is very important in seismic design can be predicted from the proposed model.

Structural reliability index versus behavior factor in RC frames with equal lateral resistance

  • Mohammadi, R.;Massumi, A.;Meshkat-Dini, A.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.995-1016
    • /
    • 2015
  • The reliability or the safety index is a measure of how far a structure is from the state of collapse. Also it defined as the probability that a structure will not fail in its lifetime. Having any increase in the reliability index is typically interpreted as increasing in the safety of structures. On the other hand most of researchers acknowledged that one of the most effective means of increasing both the reliability and the safety of structures is to increase the structural redundancy. They also acknowledged that increasing the number of vertical seismic framing will make structural system more reliable and safer against stochastic events such as earthquakes. In this paper the reliability index and the behavior factor of a numbers of three dimensional RC moment resisting frames with the same story area, equal lateral resistant as well as different redundancy has been evaluated numerically using both deterministic and probabilistic approaches. Study on the reliability index and the behavior factor in the case study models of this research illustrated that the changes of these two factors do not have always the same manner due to the increasing of the structural redundancy. In some cases, structures with larger reliability index have smaller behavior factor. Also assuming the same ultimate lateral resistance of structures which causes an increase to a certain level of redundancy can enhance behavior factor of structures. However any further increase in the redundancy of that certain level might decrease the behavior factor. Furthermore, the results of this study illustrate that concerning any increase in the structural redundancy will make the reliability index of structure to be larger.

Flexural tests on two-span unbonded post-tensioned lightweight concrete beams

  • Yang, Keun-Hyeok;Lee, Kyung-Ho;Yoon, Hyun-Sub
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.631-642
    • /
    • 2019
  • The objective of the present study is to examine the flexural behavior of two-span post-tensioned lightweight aggregate concrete (LWAC) beams using unbonded tendons and the reliability of the design provisions of ACI 318-14 for such beams. The parameters investigated were the effective prestress and loading type, including the symmetrical top one-point, two third-point, and analogous uniform loading systems. The unbonded prestressing three-wire strands were arranged with a harped profile of variable eccentricity. The total length of the beam, measured between both strand anchorages, was 11000 mm. The test results were compared with those compiled from simply supported LWAC one-way members, wherever possible. The ultimate load capacity of the present beam specimens was evaluated by the collapse mechanism of the plasticity theorem and the nominal section moment strength calculated following the provision of the ACI 318-14. The test results showed that the two-span post-tensioned LWAC beams had lower stress increase (Δfps) in the unbonded tendons than the simply supported LWAC beams with a similar reinforcement index. The effect of the loading type on Δfps and displacement ductility was less significant for two-span beams than for the comparable simply supported beams. The design equations for Δfps and Δfps proposed by ACI 318-14 and Harajli are conservative for the present two-span post-tensioned LWAC beams, although the safety decreases for the two-span beam, compared to the ratios between experiments and predictions obtained from simply supported beams.

Seismic Improvement of Staggered Truss Systems using Buckling Restrained Braces (비좌굴 가새를 이용한 스태거드 트러스 시스템의 내진성능향상)

  • Kim, Jin-Koo;Lee, Joon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.11-19
    • /
    • 2006
  • In this paper the seismic performances of 4, 10, and 30-story staggered truss systems (STS) were evaluated by observing the force-displacement relationship up io failure. The results were compared with the seismic performance of conventional moment resisting frames and braced frames. According to the analysis results, the STS showed relatively satisfactory lateral load resisting capability. However, in the mid- to high-rise STS, plastic hinges formed first at the chords were transferred to vertical members of the vierendeel panels, which formed a week link and subsequently leaded to brittle collapse of the structure. Therefore to enhance the ductility of STS it would be necessary to reinforce the vertical bracing members of the virendeel panels so that the plastic hinges, once toned in cord members of a virendeel panel, spread out to virendeel panels of neighboring stories.

CO OBSERVATIONS AND STABILITY ANALYSIS OF B133 AND B134

  • Hong, S.S.;Kim, H.G.;Park, S.H.;Park, Y.S.;Imaoka, K.
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.71-94
    • /
    • 1991
  • With the 14 m radio telescope at DRAO and the 4 m at Nagoya University, we have made detailed maps of $^{12}CO$ and $^{13}CO$ emissions from two Barnard objects B133 and B134 in the $J=1{\rightarrow}O$ rotational transition lines. Usual LTE analyses of the CO observations led us to determine the distribution of column densities over an entire area encompassing both globules. Total gas masses estimated from the column density map are $90\;M_{\odot}$ and $20\;M_{\odot}$ for B133 and B134, respectively. The radial velocity of B133 is red shifted with respect to B134 by $0.8\;km\;s^{-1}$, which is too lagre to bind the two clouds as a binary system. We have shown that the usual stability analysis based on the simplified version of virial theorem with the second time-derivative of the moment of inertia term $\ddot{I}$ being ignored could mislead us in determining whether a given cloud eventually collapses or not. The lull version of the scalar virial theorem with the $\ddot{I}$ term is shown to be useful in following up the time-dependent variations of the cloud size R and its streaming velocity $\dot{R}$ as functions of time. Results of our stability analysis suggest that B133 will eventually collapse in $(2{\sim}4){\times}10^6$ years.

  • PDF

Evaluation of Design Factor For Debris Flow Dam Design (토석류·유목 대책에 관한 설계인자 분석)

  • Kim, Woonhyung;Song, Byungwoong;Lee, Kughyung;Kim, Burmsug
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 2009
  • In this study, design method for debris flow and drift wood dams used in Japan was evaluated to develop currently available design method practiced in Korea. In Japan, represented a similarity in the aspects of topography and the climate compared with Korea, casualties due to debris flow, landslide, and collapse of cliff as well as earthquake, have been reported every year. Especially, debris flow had often occurred during heavy rainy season rather than due to Typhoons or localized torrential thunderstorms. Since the characteristic of the debris flow reveals in the middle of water flow and soil behaviors, the behavior of debris flow associated with drift wood was not fully understood at this moment and therefore empirical design method to design debris flow dam is adopted in the practice and currently used in Japan. Based on the result of this study, modification of debris flow design method used in Korea are presented.

  • PDF

Applied element method simulation of experimental failure modes in RC shear walls

  • Cismasiu, Corneliu;Ramos, Antonio Pinho;Moldovan, Ionut D.;Ferreira, Diogo F.;Filho, Jorge B.
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.365-374
    • /
    • 2017
  • With the continuous evolution of the numerical methods and the availability of advanced constitutive models, it became a common practice to use complex physical and geometrical nonlinear numerical analyses to estimate the structural behavior of reinforced concrete elements. Such simulations may yield the complete time history of the structural behavior, from the first moment the load is applied until the total collapse of the structure. However, the evolution of the cracking pattern in geometrical discontinuous zones of reinforced concrete elements and the associated failure modes are relatively complex phenomena and their numerical simulation is considerably challenging. The objective of the present paper is to assess the applicability of the Applied Element Method in simulating the development of distinct failure modes in reinforced concrete walls subjected to monotonic loading obtained in experimental tests. A pushover test was simulated numerically on three distinct RC shear walls, all presenting an opening that guarantee a geometrical discontinuity zone and, consequently, a relatively complex cracking pattern. The presence of different reinforcement solutions in each wall enables the assessment of the reliability of the computational model for distinct failure modes. Comparison with available experimental tests allows concluding on the advantages and the limitations of the Applied Element Method when used to estimate the behavior of reinforced concrete elements subjected to monotonic loading.

Evaluation of Performance of Korean Existing School Buildings with Masonry Infilled Walls Against Earthquakes (조적조 비내력벽을 가진 기존 학교 구조물의 내진 성능평가)

  • Moon, Ki Hoon;Jeon, Yong Ryul;Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.37-46
    • /
    • 2012
  • In Korea, most existing school buildings have been constructed with moment frames with un-reinforced infill walls designed only considering gravity loads. Thus, the buildings may not perform satisfactorily during earthquakes expected in Korea. In exterior frames of the building, un-reinforced masonry infill walls with window openings are commonly placed, which may alter the structural behavior of adjacent columns due to the interaction between the wall and column. The objective of this study is to evaluate the seismic performance of existing school buildings according to the procedure specified in ATC 63. Analytical models are proposed to simulate the structural behavior of columns, infill walls and their interaction. The accuracy of the proposed model is verified by comparing the analytical results with the experimental test results for one bay frames with and without infill walls with openings. For seismic performance evaluation, three story buildings are considered as model frames located at sites having different soil conditions ($S_A$, $S_B$, $S_C$, $S_D$, $S_E$) in Korea. It is observed that columns behaves as a short columns governed by shear due to infill masonry walls with openings. The collapse probabilities of the frames under maximum considered earthquake ranges from 62.9 to 99.5 %, which far exceed the allowable value specified in ATC 63.