• Title/Summary/Keyword: Collaborative Recommender Systems

Search Result 203, Processing Time 0.023 seconds

User-Item Matrix Reduction Technique for Personalized Recommender Systems (개인화 된 추천시스템을 위한 사용자-상품 매트릭스 축약기법)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.16 no.1
    • /
    • pp.97-113
    • /
    • 2009
  • Collaborative filtering(CF) has been a very successful approach for building recommender system, but its widespread use has exposed to some well-known problems including sparsity and scalability problems. In order to mitigate these problems, we propose two novel models for improving the typical CF algorithm, whose names are ISCF(Item-Selected CF) and USCF(User-Selected CF). The modified models of the conventional CF method that condense the original dataset by reducing a dimension of items or users in the user-item matrix may improve the prediction accuracy as well as the efficiency of the conventional CF algorithm. As a tool to optimize the reduction of a user-item matrix, our study proposes genetic algorithms. We believe that our approach may relieve the sparsity and scalability problems. To validate the applicability of ISCF and USCF, we applied them to the MovieLens dataset. Experimental results showed that both the efficiency and the accuracy were enhanced in our proposed models.

  • PDF

A Study on the Relation of Top-N Recommendation and the Rank Fitting of Prediction Value through a Improved Collaborative Filtering Algorithm (협력적 필터링 알고리즘의 예측 선호도 순위 일치와 ToP-N 추천에 관한 연구)

  • Lee, Seok-Jun;Lee, Hee-Choon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.65-73
    • /
    • 2007
  • This study devotes to compare the accuracy of Top-N recommendations of items transacted on the web site for customers with the accuracy of rank conformity of the real ratings with estimated ratings for customers preference about items generated from two types of collaborative filtering algorithms. One is Neighborhood Based Collaborative Filtering Algorithm(NBCFA) and the other is Correspondence Mean Algorithm(CMA). The result of this study shows the accuracy of Top-N recommendations and the rank conformity of real ratings with estimated ratings generated by CMA are better than that of NBCFA. It would be expected that the customer's satisfaction in Recommender System is more improved by using the prediction result from CMA than NBCFA, and then Using CMA in collaborative filtering recommender system is more efficient than using NBCFA.

  • PDF

A Collaborative Filtering using SVD on Low-Dimensional Space (SVD을 이용한 저차원 공간에서 협력적 여과)

  • Jung, Jun;Lee, Pil-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.273-280
    • /
    • 2003
  • Recommender System can help users to find products to Purchase. A representative method for recommender systems is collaborative filtering (CF). It predict products that user may like based on a group of similar users. User information is based on user's ratings for products and similarities of users are measured by ratings. As user is increasing tremendously, the performance of the pure collaborative filtering is lowed because of high dimensionality and scarcity of data. We consider the effect of dimension deduction in collaborative filtering to cope with scarcity of data experimentally. We suggest that SVD improves the performance of collaborative filtering in comparison with pure collaborative filtering.

Design and Implementation of e-Commerce Applications using Improved Recommender Systems (개선된 추천시스템을 이용한 전자상거래시스템 설계 및 구현)

  • Kim, Yeong-Seol;Kim, Byeong-Cheon;Yun, Byeong-Ju
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.329-336
    • /
    • 2002
  • With the fast development of Internet environment, e-Commerce is rapidly increasing. n the expanding e-Commerce environment, the need for a new e-Commerce systems what will deliver products to the customer rapidly and increase sales is growing bigger. Recently, these requirements brought many researches on recommender systems. However, until now, those recommender systems have a limit because it takes too much time for recommender systems to give customers the recommendations in real time, if the number of purchase data of customers is large. So this paper concerns on the recommender systems using collaborative filtering as one of the solutions to increase the competitive power. We proposed and experimented the more improved recommender systems which could decrease the data size to shorten the recommending time by using the representative category of the product which customers want to buy. Also, we design and implement a recommender system using Enterprise JavaBeans.

Evaluating the Quality of Recommendation System by Using Serendipity Measure (세렌디피티 지표를 이용한 추천시스템의 품질 평가)

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.89-103
    • /
    • 2019
  • Recently, various approaches to recommendation systems have been studied in terms of the quality of recommendation system. A recommender system basically aims to provide personalized recommendations to users for specific items. Most of these systems always recommend the most relevant items of users or items. Traditionally, the evaluation of recommender system quality has focused on the various predictive accuracy metrics of these. However, recommender system must be not only accurate but also useful to users. User satisfaction with recommender systems as an evaluation criterion of recommender system is related not only to how accurately the system recommends but also to how much it supports the user's decision making. In particular, highly serendipitous recommendation would help a user to find a surprising and interesting item. Serendipity in this study is defined as a measure of the extent to which the recommended items are both attractive and surprising to the users. Therefore, this paper proposes an application of serendipity measure to recommender systems to evaluate the performance of recommender systems in terms of recommendation system quality. In this study we define relevant or attractive unexpectedness as serendipity measure for assessing recommendation systems. That is, serendipity measure is evaluated as the measure indicating how the recommender system can find unexpected and useful items for users. Our experimental results show that highly serendipitous recommendation such as item-based collaborative filtering method has better performance than the other recommendations, i.e. user-based collaborative filtering method in terms of recommendation system quality.

Using Degree of Match to Improve Prediction Quality in Collaborative Filtering Systems (협업 필터링 시스템에서 Degree of Match를 이용한 성능향상)

  • Sohn, Jae-Bong;Suh, Yong-Moo
    • Information Systems Review
    • /
    • v.8 no.2
    • /
    • pp.139-154
    • /
    • 2006
  • Recommender systems help users find their interesting items more easily or provide users with meaningful items based on their preferences. Collaborative filtering(CF) recommender systems, the most successful recommender system, use opinions of users to recommend for an active user who needs recommendation. That is, ratings which users have voted on items to indicate preference on them are the source for making recommendation. Although CF systems are designed only to use users' preferences as the source of recommendation, use of some available information is believed to increase both the performance and the accuracy of CF systems. In this paper, we propose a CF recommender system which utilizes both degree of match and demographic information(e.g., occupation, gender, age) to increase the performance and the accuracy. Since more and more information is accumulated in CF systems, it is important to reduce the data volume while maintaining the same or the higher level of accuracy. We used both degree of match and demographic information as criteria for reducing the data volume, thereby naturally enhancing the performance. It is shown that using degree of match improves the prediction accuracy too in CF systems and also that using some demographic information also results in better accuracy.

Optimization of the Similarity Measure for User-based Collaborative Filtering Systems (사용자 기반의 협력필터링 시스템을 위한 유사도 측정의 최적화)

  • Lee, Soojung
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.1
    • /
    • pp.111-118
    • /
    • 2016
  • Measuring similarity in collaborative filtering-based recommender systems greatly affects system performance. This is because items are recommended from other similar users. In order to overcome the biggest problem of traditional similarity measures, i.e., data sparsity problem, this study suggests a new similarity measure that is the optimal combination of previous similarity and the value reflecting the number of co-rated items. We conducted experiments with various conditions to evaluate performance of the proposed measure. As a result, the proposed measure yielded much better performance than previous ones in terms of prediction qualities, specifically the maximum of about 7% improvement over the traditional Pearson correlation and about 4% over the cosine similarity.

TV Program Recommender System Using Viewing Time Patterns (시청시간패턴을 활용한 TV 프로그램 추천 시스템)

  • Bang, Hanbyul;Lee, HyeWoo;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.431-436
    • /
    • 2015
  • As a number of TV programs broadcast today, researches about TV program recommender system have been studied and many researchers have been studying recommender system to produce recommendation with high accuracy. Recommender system recommends TV program to user by using metadata like genre, plot or calculating users' preferences about TV programs. In this paper, we propose a new TV program Collaborative Filtering Recommender System that exploits viewing time pattern like viewing ratio, relation with finish time and recently viewing history to calculate preference for high-quality of recommendation. To verify usefulness of our research, we also compare our method which utilizes viewing time patterns and baseline which simply recommends TV program of user's most frequently watched channel. Through this experiments, we show that our method very effectively works and recommendation performance increases.

Collaborative Filtering for Credit Card Recommendation based on Multiple User Profiles (신용카드 추천을 위한 다중 프로파일 기반 협업필터링)

  • Lee, Won Cheol;Yoon, Hyoup Sang;Jeong, Seok Bong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.154-163
    • /
    • 2017
  • Collaborative filtering, one of the most widely used techniques to build recommender systems, is based on the idea that users with similar preferences can help one another find useful items. Credit card user behavior analytics show that most customers hold three or less credit cards without duplicates. This behavior is one of the most influential factors to data sparsity. The 'cold-start' problem caused by data sparsity prevents recommender system from providing recommendation properly in the personalized credit card recommendation scenario. We propose a personalized credit card recommender system to address the cold-start problem, using multiple user profiles. The proposed system consists of a training process and an application process using five user profiles. In the training process, the five user profiles are transformed to five user networks based on the cosine similarity, and an integrated user network is derived by weighted sum of each user network. The application process selects k-nearest neighbors (users) from the integrated user network derived in the training process, and recommends three of the most frequently used credit card by the k-nearest neighbors. In order to demonstrate the performance of the proposed system, we conducted experiments with real credit card user data and calculated the F1 Values. The F1 value of the proposed system was compared with that of the existing recommendation techniques. The results show that the proposed system provides better recommendation than the existing techniques. This paper not only contributes to solving the cold start problem that may occur in the personalized credit card recommendation scenario, but also is expected for financial companies to improve customer satisfactions and increase corporate profits by providing recommendation properly.