Using Degree of Match to Improve Prediction Quality in Collaborative Filtering Systems

협업 필터링 시스템에서 Degree of Match를 이용한 성능향상

  • Sohn, Jae-Bong (Department of Business, College of Business Administration, Korea University) ;
  • Suh, Yong-Moo (Department of Business, College of Business Administration, Korea University)
  • 손재봉 (고려대학교 경영대학 경영학과) ;
  • 서용무 (고려대학교 경영대학 경영학과)
  • Published : 2006.08.30

Abstract

Recommender systems help users find their interesting items more easily or provide users with meaningful items based on their preferences. Collaborative filtering(CF) recommender systems, the most successful recommender system, use opinions of users to recommend for an active user who needs recommendation. That is, ratings which users have voted on items to indicate preference on them are the source for making recommendation. Although CF systems are designed only to use users' preferences as the source of recommendation, use of some available information is believed to increase both the performance and the accuracy of CF systems. In this paper, we propose a CF recommender system which utilizes both degree of match and demographic information(e.g., occupation, gender, age) to increase the performance and the accuracy. Since more and more information is accumulated in CF systems, it is important to reduce the data volume while maintaining the same or the higher level of accuracy. We used both degree of match and demographic information as criteria for reducing the data volume, thereby naturally enhancing the performance. It is shown that using degree of match improves the prediction accuracy too in CF systems and also that using some demographic information also results in better accuracy.

추천시스템은 사용자들의 관심을 끄는 아이템을 그들이 보다 쉽게 찾도록 도와주거나, 그들의 기호에 기반하여 의미 있는 아이템들을 제공한다. 지금까지 가장 성공적이었던 협업 필터링 기반 추천시스템은 다른 사용자들의 의견을 참조하여 추천을 원하는 사용자에게 추천을 한다. 즉, 아이템들에 대한 사용자 기호를 나타내는 다른 사용자들의 평가정보가 추천을 위한 정보원으로 사용된다. 이처럼, 협업 필터링 기반 추천시스템이 사용자들의 기호만을 이용하도록 설계되었지만, 다른 정보를 이용하면 추천시스템의 성능과 정확도를 높일 수 있을 것으로 사료되어, 본 논문에서는 유사 정도와 인구통계학 정보를 이용한 협업 필터링 기반 추천시스템을 제안한다. 이런 추천시스템에서는 평가정보가 계속적으로 누적되기 때문에, 추천시스템의 정확도를 유지할 수 있는 한, 사용하는 데이터의 양을 줄이는 게 중요하다. 본 논문에서는 유사 정도와 인구통계학 정보를, 사용할 데이터의 양을 줄이기 위한 기준으로 사용하여 자연스레 시스템의 성능을 향상시켰다. 본 논문에서는 실험을 통하여 유사 정도의 사용이 추천시스템의 정확도를 높여주었고, 특정 인구통계학 정보의 사용도 추천시스템의 정확도를 높였음을 보였다.

Keywords

References

  1. Burke, R., 'Hybrid Recommender Systems: Survey and Experiments', User Modeling and User-Adapted Interaction, Vol.12, 2002, pp. 331-370 https://doi.org/10.1023/A:1021240730564
  2. Bergholz, A., Coping with Sparsity in a Recommender System, Springer-Verlag Berlin Heidelberg, 2003
  3. Basilico, J. and T. Hofmann, 'Unifying Collaborative and Content-Based Filtering,' Proceedings of the 21th international Conference on Machine Learning, 2004, p. 9
  4. Basu, C., H. Hirsh, and W. Cohen, 'Recommendation as classification: Using social and content-based information in recommendation', Proceedings of the International Conference on Artificial Intelligence, 1998
  5. Balabanovic, M. and Y. Shoham, 'Fab: Content-based, collaborative recommendation', Communications of the ACM, Vol.40, 1997, pp. 66-72 https://doi.org/10.1145/245108.245124
  6. Callan, J. and M. Connell, 'Query-Based Sampling of Text Databases', ACM Transactions on Information Systems, Vol.19, 2001, pp. 97-130 https://doi.org/10.1145/382979.383040
  7. Callan, J., M. Connell, and A. Du, 'Automatic discovery of language models for text databases', Proceedings of the 1999 ACM International Conference on Management of Data, 1999, pp. 479-490
  8. Goldberg, D., D. Nichols, Brian M. Oki, and D. Terry, 'Using collaborative filtering to weave an information Tapestry', Communications of the ACM, Vol.35, 1992, pp. 61-71
  9. Good, N., J. Schafer, A. J. Konstan, A. Borchers, B. Sarwar, J. Herlocker, and J. Riedl, 'Combining Collaborative Filtering with Personal Agents for Better Recommendations', Proceedings of the American Association for Artificial Intelligence, 1999
  10. John, S. B., D. Heckerman, C. Kadie, 'Empirical Analysis of Predictive Algorithms for Collaborative Filtering', Technical Report, MSR-TR 98-12, Microsoft Research, Microsoft Corporation, 1998
  11. Jonathan, L. H., Joseph A. Konstan, A. Borchers, J. Riedl, 'An algorithmic framework for performing collaborative filtering,' Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval, Berkeley, California, United States, 1999, pp. 230-237
  12. Khors, A. and B. Merialdo, 'Clustering for Collaborative Filtering Applications', Proceedings of CIMCA 1999. IOS Press, 1999
  13. Krulwich, B., 'Lifestyle Finder: Intelligent user profiling using large-scale demographic data', Artificial Intelligence Magazine, Vol.18, No.2, 1997
  14. Lim, M. and J. Kim, 'An Adaptive Recommendation System with a Coordinator Agent', In Web Intelligence: Research and Development, LNAI 2198, 2001
  15. Peter, J. D., 'ACM president's letter: electronic junk', Communication of the ACM, Vol.25, 1982, pp. 163-165 https://doi.org/10.1145/358453.358454
  16. Rojsattarat, E. and N. Soonthornphisaj, 'Hybrid Recommendation: Combining Content-Based Prediction and Collaborative Filtering', Proceedings of the Intelligent Data Engineering and Automated Learning, 4th International Conference, IDEAL 2003, Hong Kong, China, March 21-23, 2003, pp. 337-344
  17. Resnick, P., N. Lacovou, M. Suchak, P. Bergstrom, and J. Riedl, 'GroupLens: An Open Architecture for Collaborative Filtering of Netnews', Proceedings of the 1994 Computer Supported Collaborative Work Conference, 1994
  18. Shardanand, U., 'Social information filtering: Algorithms for automating 'Word of Mouth', Proceedings of Human Factors in Computing Systems ACM CHI, 1995, pp. 210-217
  19. Sun Lee, W., 'Collaborative Learning for Recommender System', Proceedings of the 10th international Conference on Machine Learning, 2001, pp. 314-321
  20. Salton, G. and M. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New York, 1983
  21. Sarwar, B., G. Karypis, J. Konstan, and J. Riedl, 'Analysis of Recommendation Algorithms for E-Commerce', Proceedings of the 2nd ACM conference on Electronic Commerce, 2000, pp.158-167
  22. Yu, K., A. Schwaighofer, V. Tresp, W.-Y. Ma, H.J. Zhang, 'Collaborative Ensemble Learning: Combining Collaborative and Content-Based Information Filtering via Hierarchical Bayes,' Proceedings of UAI 2003, Morgan Kaufman, 2003