References
- Burke, R., 'Hybrid Recommender Systems: Survey and Experiments', User Modeling and User-Adapted Interaction, Vol.12, 2002, pp. 331-370 https://doi.org/10.1023/A:1021240730564
- Bergholz, A., Coping with Sparsity in a Recommender System, Springer-Verlag Berlin Heidelberg, 2003
- Basilico, J. and T. Hofmann, 'Unifying Collaborative and Content-Based Filtering,' Proceedings of the 21th international Conference on Machine Learning, 2004, p. 9
- Basu, C., H. Hirsh, and W. Cohen, 'Recommendation as classification: Using social and content-based information in recommendation', Proceedings of the International Conference on Artificial Intelligence, 1998
- Balabanovic, M. and Y. Shoham, 'Fab: Content-based, collaborative recommendation', Communications of the ACM, Vol.40, 1997, pp. 66-72 https://doi.org/10.1145/245108.245124
- Callan, J. and M. Connell, 'Query-Based Sampling of Text Databases', ACM Transactions on Information Systems, Vol.19, 2001, pp. 97-130 https://doi.org/10.1145/382979.383040
- Callan, J., M. Connell, and A. Du, 'Automatic discovery of language models for text databases', Proceedings of the 1999 ACM International Conference on Management of Data, 1999, pp. 479-490
- Goldberg, D., D. Nichols, Brian M. Oki, and D. Terry, 'Using collaborative filtering to weave an information Tapestry', Communications of the ACM, Vol.35, 1992, pp. 61-71
- Good, N., J. Schafer, A. J. Konstan, A. Borchers, B. Sarwar, J. Herlocker, and J. Riedl, 'Combining Collaborative Filtering with Personal Agents for Better Recommendations', Proceedings of the American Association for Artificial Intelligence, 1999
- John, S. B., D. Heckerman, C. Kadie, 'Empirical Analysis of Predictive Algorithms for Collaborative Filtering', Technical Report, MSR-TR 98-12, Microsoft Research, Microsoft Corporation, 1998
- Jonathan, L. H., Joseph A. Konstan, A. Borchers, J. Riedl, 'An algorithmic framework for performing collaborative filtering,' Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval, Berkeley, California, United States, 1999, pp. 230-237
- Khors, A. and B. Merialdo, 'Clustering for Collaborative Filtering Applications', Proceedings of CIMCA 1999. IOS Press, 1999
- Krulwich, B., 'Lifestyle Finder: Intelligent user profiling using large-scale demographic data', Artificial Intelligence Magazine, Vol.18, No.2, 1997
- Lim, M. and J. Kim, 'An Adaptive Recommendation System with a Coordinator Agent', In Web Intelligence: Research and Development, LNAI 2198, 2001
- Peter, J. D., 'ACM president's letter: electronic junk', Communication of the ACM, Vol.25, 1982, pp. 163-165 https://doi.org/10.1145/358453.358454
- Rojsattarat, E. and N. Soonthornphisaj, 'Hybrid Recommendation: Combining Content-Based Prediction and Collaborative Filtering', Proceedings of the Intelligent Data Engineering and Automated Learning, 4th International Conference, IDEAL 2003, Hong Kong, China, March 21-23, 2003, pp. 337-344
- Resnick, P., N. Lacovou, M. Suchak, P. Bergstrom, and J. Riedl, 'GroupLens: An Open Architecture for Collaborative Filtering of Netnews', Proceedings of the 1994 Computer Supported Collaborative Work Conference, 1994
- Shardanand, U., 'Social information filtering: Algorithms for automating 'Word of Mouth', Proceedings of Human Factors in Computing Systems ACM CHI, 1995, pp. 210-217
- Sun Lee, W., 'Collaborative Learning for Recommender System', Proceedings of the 10th international Conference on Machine Learning, 2001, pp. 314-321
- Salton, G. and M. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New York, 1983
- Sarwar, B., G. Karypis, J. Konstan, and J. Riedl, 'Analysis of Recommendation Algorithms for E-Commerce', Proceedings of the 2nd ACM conference on Electronic Commerce, 2000, pp.158-167
- Yu, K., A. Schwaighofer, V. Tresp, W.-Y. Ma, H.J. Zhang, 'Collaborative Ensemble Learning: Combining Collaborative and Content-Based Information Filtering via Hierarchical Bayes,' Proceedings of UAI 2003, Morgan Kaufman, 2003