In recent years, edge computing technology consists of several Internet of Things (IoT) devices with embedded sensors that have improved significantly for monitoring, detection, and management in an environment where big data is commercialized. The main focus of edge computing is data optimization or task offloading due to data and task-intensive application development. However, existing offloading approaches do not consider correlations and associations between data and tasks involving edge computing. The extent of collaborative offloading segmented without considering the interaction between data and task can lead to data loss and delays when moving from edge to edge. This article proposes a range segmentation of dynamic offloading (RSDO) algorithm that isolates the offload range and collaborative edge node around the edge node function to address the offloading issue.The RSDO algorithm groups highly correlated data and tasks according to the cause of the overload and dynamically distributes offloading ranges according to the state of cooperating nodes. The segmentation improves the overall performance of edge nodes, balances edge computing, and solves data loss and average latency.
정보 통신 기술 (ICT)이 축사와 접목된 스마트 축사는 대부분 클라우드 컴퓨팅 패러다임에 기반하고 있다. 클라우드 기반 스마트 축사는 응답 시간 증가, IoT 센서 증가에 따른 클라우드의 자원 부담, 망의 트래픽 부담과 같은 단점이 있고 인접한 IoT 디바이스와의 협업을 통한 장애 회복 메커니즘이 거의 없는 실정이다. 본 논문에서는 에지 컴퓨팅 기반 IoT 협업 시스템을 제안한다. 에지 디바이스의 비교적 제한적인 컴퓨팅 자원으로 클라우드의 웹 서버 기능을 분담하게 하여 클라우드에 필요한 자원을 절감하며, 사용자 요청에 대한 응답 시간을 개선하고자 한다. 또한 heartbeat 기반 장애 회복 메커니즘을 통하여 IoT 디바이스의 장애를 감지하고 그에 따른 적절한 조치를 하도록 하였다.
IEIE Transactions on Smart Processing and Computing
/
제1권2호
/
pp.117-124
/
2012
A client collaboration (CC) system is proposed for a user relay system. The proposed scheme focuses on the management of transmit power and leakage interference. In the proposed CC system, edge users transmit signals to the masters considered as user relays. The masters relay the signals of the edge users to the base station using the resource blocks (RBs) that are assigned to the edge users. The leakage interference and power consumption were analyzed in the CC system. In addition, an optimal master location problem was formulated based on the signal-to-leakage-plus-noise ratio (SLNR). Because the optimal master location problem is quite complex, a sub-optimal master location problem was proposed and a closed-form sub-optimal master location was obtained. The edge users generate smaller leakage interference and power consumption in the proposed CC system compared to the system without the CC. The numerical results showed that the edge users generate smaller leakage interference and power consumption in the proposed CC system compared to the system without the CC, and the average throughput increases.
Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.
본 논문에서는 FEC (Fog/Edge Computing) 환경에서 다중 분기구조의 부분 오프로딩을 위해 모바일 장치와 에지서버로 구성된 2계층 협력 컴퓨팅 시스템을 제안한다. 제안 시스템은 다중 분기구조에 대한 재구성 선형화 기법을 적용하여 응용 서비스 처리를 분할하는 알고리즘과 모바일 장치와 에지 서버 간의 부분 오프로딩을 통한 최적의 협업 알고리즘을 포함한다. 또한 계산 오프로딩 및 CNN 계층 스케줄링을 지연시간 최소화 문제로 공식화하고 시뮬레이션을 통해 제안 시스템의 효과를 분석한다. 실험 결과 제안 알고리즘은 DAG 및 체인 토폴로지 모두에 적합하고 다양한 네트워크 조건에 잘 적응할 수 있으며, 로컬이나 에지 전용 실행과 비교하여 효율적인 작업 처리 전략 및 처리시간을 제공한다. 또한 제안 시스템은 모바일 장치에서의 응용 서비스 최적 실행을 위한 모델의 경량화 및 에지 리소스 워크로드의 효율적 분배 관련 연구에 적용 가능하다.
FEC (Fog/Edge Computing) 환경에서 지연시간 최소화는 로컬과 에지 서버 간의 효율적인 협력을 보장하기 위한 최적의 계산 오프로딩 방법 결정을 통해 실현될 수 있다. 본 논문은 임의의 응용 서비스 실행모듈에 대한 부분 오프로딩 기반의 로컬(모바일 장치)과 에지 서버 간의 협업 경로를 추출하는 방법을 제안한다. 제안 방법은 다중 분기구조를 포함하는 응용 서비스 실행모듈에 대한 부분 오프로딩 기반의 최적 협업 실행경로 추출 방법을 제안한다. 제안 방법은 각 부분 모듈들의 실행위치에 따라 변화되는 지연시간 측정 및 분석에 적용가능하다.
본 논문은 FEC 환경에서 응용 서비스의 처리 지연시간 최소화를 위하여 선행연구 제안한 부분 오프로딩 시스템의 네트워크 부하에 따른 오프로딩의 효과를 분석한다. 모바일 장치와 FEC 서버 간의 2계층 협력 컴퓨팅 시스템으로 구성된 제안 시스템을 로컬 전용 및 에지 서버 전용 처리와 비교한다. 제안 시스템은 다중 분기구조의 재구성 선형화를 통한 부분 오프로딩 알고리즘[1]과 두 계층 간의 최적 협업 알고리즘[2]을 포함한다. 실험은 다중 분기구조의 DAG 토폴로지를 갖는 논리적 CNN 모델을 대상으로 계층 스케줄링을 적용하여 수행하였으며, 실험 결과 제안 시스템은 로컬이나 에지 전용 실행과 비교하여 항상 효율적인 작업 처리 전략 및 처리 지연시간을 제공함을 입증하였다.
본 논문에서는 기업 내 사무업무 프로세스를 자동화하고 보다 효율적인 작업 환경 구축을 위하여 실시간 그룹 협업 지원 기술과 ICN 기반의 워크플로우 모델링 도구를 설계하고 구현한다. 모델링 도구는 그룹 단위의 실시간 협업 지원을 가능하게 하는 워크플로우 비즈니스 프로세스를 정의하므로 "그룹 ICN 에디터"라 부른다. 본 논문에서는 그룹 ICN 에디터가 여러 사용자가 동시에 작업이 가능하게 하기 위해 Flexible rJAMM을 이용하여 에디터를 구현한다. 에디터를 통하여 정의된 워크플로우 비즈니스 프로세스 모델들의 집합은 데이터베이스에 저장이 되고, WfMC에서 표준화한 워크플로우 프로세스 정의 언어(WPDL)로 변환되게 된다.로 변환되게 된다.
최근 급변하고 있는 시장변화로 기업의 경쟁우위를 지속하기 위한 기업 간 협업 활동과 그 중요성이 증가되고 있다. 특히 한정된 자원을 보유한 중소기업의 외부자원 활용과 협업 활동은 기업 내 역량강화 및 혁신성과 창출함 있어 중요한 요소로 자리 잡고 있다. 현재까지의 대다수 선행연구들에서는 중소기업의 다양한 특성과 협업의 연관성을 세부적으로 구분하여 혁신성과를 해석하기보다 기업의 크기(대기업과 중소기업)와 연구개발 활동 등의 환경적 요인으로 구분하여 협업과 성과의 영향정도를 규명하였다. 이에 본 연구에서는 국내 중소기업의 외부 협업 활동과 관련한 기업의 다양한 특성과 혁신성과 유형에 미치는 영향력 정도를 분석하고자 하였다. 이에 기업의 특성을 주 제품이 속한 산업군, 고객군, 기업 규모로 구분하였으며, 각 유형에 따른 협업 활동이 제품혁신과 공정혁신 성과에 미치는 영향력을 살펴보았다. 본 연구에서는 프로빗 모형을 사용하였으며, 분석결과 외부협업은 제품혁신에는 큰 영향을 미치지만 공정혁신에는 유의미한 영향을 미치지 않는 것으로 나타났다. 또한 중소기업의 주 제품군이 속한 산업과 고객에 따른 협업 활동의 경우, 전반적으로 두 유형의 혁신성과에 다양한 영향을 미치는 것으로 나타났다. 또한 기업 규모가 큰 경우, 외부와의 협업 활동이 규모가 작은 기업보다 혁신성과에 큰 영향을 미치는 것으로 나타났다. 본 연구결과를 바탕으로 지속적인 성과창출에 필요한 기업특성에 따른 협업의 영향력을 인지함으로써 향후 소규모 기업들을 위한 혁신성과 창출을 위한 전략을 도입하려는 실무자 및 기관 관계자들에게 도움이 될 것으로 기대된다.
Vimal, S.;Jesuva, Arockiadoss S;Bharathiraja, S;Guru, S;Jackins, V.
Journal of Platform Technology
/
제9권1호
/
pp.15-22
/
2021
In a smart manufacturing environment, more and more devices are connected to the Internet so that a large volume of data can be obtained during all phases of the product life cycle. The large-scale industries, companies and organizations that have more operational units scattered among the various geographical locations face a huge resource consumption because of their unorganized structure of sharing resources among themselves that directly affects the supply chain of the corresponding concerns. Cloud-based smart manufacturing paradigm facilitates a new variety of applications and services to analyze a large volume of data and enable large-scale manufacturing collaboration. The manufacturing units include machinery that may be situated in different geological areas and process instances that are executed from different machinery data should be constantly managed by the super admin to coordinate the manufacturing process in the large-scale industries these environments make the manufacturing process a tedious work to maintain the efficiency of the production unit. The data from all these instances should be monitored to maintain the integrity of the manufacturing service system, all these data are computed in the cloud environment which leads to the latency in the performance of the smart manufacturing service system. Instead, validating data from the external device, we propose to validate the data at the front-end of each device. The validation process can be automated by script validation and then the processed data will be sent to the cloud processing and storing unit. Along with the end-device data validation we will implement the APM(Asset Performance Management) to enhance the productive functionality of the manufacturers. The manufacturing service system will be chunked into modules based on the functionalities of the machines and process instances corresponding to the time schedules of the respective machines. On breaking the whole system into chunks of modules and further divisions as required we can reduce the data loss or data mismatch due to the processing of data from the instances that may be down for maintenance or malfunction ties of the machinery. This will help the admin to trace the individual domains of the smart manufacturing service system that needs attention for error recovery among the various process instances from different machines that operate on the various conditions. This helps in reducing the latency, which in turn increases the efficiency of the whole system
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.