• Title/Summary/Keyword: Cold forming process

Search Result 238, Processing Time 0.02 seconds

Residual Stress Evolution during Leveling of Hot Rolled Cold Forming Purpose High Strength Coils and Camber Prediction (냉간 성형용 열연 고강도 강판의 교정 중 잔류음력 변화와 절단 후 camber 발생 거동 연구)

  • Park, K.C.;Ryu, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.112-115
    • /
    • 2007
  • In order to investigate the residual stress evolution during the leveling process of hot rolled high strength coils for cold forming, the in-plane residual stress of plate sampled at SPM, rough leveler and finish leveler were measured by cutting method. Residual stress was localized near the edge of plate. As the thickness of plate was increased, the region with residual stress was expanded. The gradient of residual stress within plate was reduced during the leveling process. But the residual stress itself was not removed at the ranges of tested conditions. From the measured residual stress distribution within the plate, camber of plate cut to small width was predicted exactly within error range of experiment.

  • PDF

Effect of Die and Lubrication in Fine Wire Cold Hydrostatic Extrusion (극세선 냉간 정수압 압출에서 금형과 윤활의 영향)

  • Na K. H.;Park H. J.;Kim S. S.;Yoon D. J.;Choi T. H.;Kim E. Z.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.225-230
    • /
    • 2002
  • As in most metal forming processes, die and lubrication are of vital importance in hydrostatic extrusion. An efficient die design and lubrication system selection reduce the pressure required for a given reduction ratio by lowering friction at the billet-die interface. In contrast to the conventional macroscopic extrusion, fine-wire fabrication requires higher extrusion pressure and effect of friction is much more significant. Forming fine Au, Ag, and Cu wire with hydrostatic extrusion process in cold condition, the effect of extrusion die angle, lubrication and billet's initial diameter was studied.

  • PDF

Experiment of tong-neck Flange Cold Forging Process Using Plasticine (플라스티신을 이용한 롱넥 플랜지 냉간 단조 공정의 모사 실험)

  • 이호용;임중연;이상돈
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2001
  • The cold forging process to produce a long-neck flange is investigated by using model material test. The two stage process with optimum design condition is examined using plasticine, which is suitable to model steel at room temperature. The similarity theory is employed to estimate the forging load of each sequence by strict application of similarity condition between steel(AISI 1015) and plasticine material The model test results are compared with the simulation results and shows good agreement. The proper forging process with least forming energy can be resulted in $25^{\circ}$ of extrusion semi-die angle.

  • PDF

Study on an Aluminum Modified Alloy and Manufacturing Conditions for Hot Metal Gas Forming (열간가스성형용 알루미늄 개발 합금 공정 조건에 관한 연구)

  • Lee, G.M.;Go, G.Y.;Lee, H.C.;Kim, D.O.;Lee, Y.K.;Kim, J.S.;Song, J.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.222-227
    • /
    • 2017
  • In order to respond to environmental regulations and increased demand for fuel economy, the demand for lightweight car bodies has grown. Hydroforming of aluminum is one possible solution as it eliminates the need for additional welding to develop closed cross-sectional parts. However, the low formability of aluminum is a limitation of its application. On the other hand, the ductility of materials can be improved at higher temperatures, and hot metal gas forming has been widely applied in the production of lightweight vehicle parts. In this study, aluminum alloy for pipe extrusion was developed by controlling the Mg:Cr:Mn ratio based on AA5083. Mechanical properties of the developed material were examined by tensile test and were applied to a forming simulation. Cold forming simulation for preforming and non-isothermal hot forming simulation for hot metal gas forming were carried out to validate process conditions. A prototype of the sidemember was manufactured under the given process condition. Finally, thickness distribution was compared with finite element analysis results.

Multistage Cold Forging Process Design of Al6082 Considering Forming Limit (Al6082의 가공한계를 고려한 냉간단조 공정설계)

  • Ann, Ku-Hee;Kang, Jong-Hun;Heo, Su-Jin;Shin, Tae-soo;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.93-99
    • /
    • 2020
  • Recently, as the weight reduction of vehicles has been actively progressed, parts developed using aluminum 60XX series from existing steel materials are increasing. In this paper, the bushing used for the front frame rail, which is one of the parts for fixing engines and other parts in automobiles, was changed to an aluminum material of the Al60XX series, and it was intended to be produced by applying of cold forging method. The bushing is a part that secures the engine frame, and in order to produce it by cold forging, the molding limit is predicted through process design, and a multi-stage process is designed through finite element analysis. In addition, in order to verify the feasibility of the designed forging process, the limits of the multi-step process were verified based on the Cockcroft Latham theory, and the crack and overlap of the actual forging work were predicted and improved.

A study on Net-shape technology of Automotive Lock-up Hub using Cold back pressure forming (배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.173-176
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. This study proposes a new method for manufacturing of high manufacturing productivity, production process reduction and low cost through back pressure forming. The Lock-up hub is manufactured through many processes, such as upsetting($1^{st}$ Forming), piercing, direct extrusion($2^{nd}$ Forming), final sizing process($3^{rd}$ Forming). In this study, process design for closed-die forging of a Lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of Lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

  • PDF

A Study on the Flow Control Forming Process and Experiment Device of Drum Clutch for Automatic Transmission (자동변속기용 드럼클러치의 유동제어 성형공정 및 실험장치 개발 연구)

  • Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.69-76
    • /
    • 2013
  • This paper presents the development of the FCF method for the manufacturing of final products using numbers related to the minimum amount of work. The utilized product is a drum clutch, which is part of the transmission of an automobile. A double acting press is secured first and a prediction of the forming load on the practical material is made through an experiment with a plasticine model. Also, a finite element simulation using product shape and properties is performed, as well as a press experiment. A double acting press is manufactured that is suitable for a double acting experiment with a conventional hydraulic press(200 tons). A peripheral device for the press is additionally designed for experimental purposes. And, the press has as its essential points the drive speed, stroke control, etc., all of which influence the forming and is modified. Especially, a laser system is used for velocity measurement of two punches. The forming load of a practical material is predicted in order to derive a forming load formula for cold conditions on the basis of approximate similarity theory. Finite element analysis of the relative velocity ratio(RVR), etc., for most suitable flow defect(unfilling, etc.) prevention is achieved as well. The results are verified through a press experiment.

Study on the Cold Formability of Drawn Dual-Phase Steels (신선 가공된 이상 조직강의 냉간 성형성에 대한 연구)

  • 박경수;최상우;이덕락;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.269-273
    • /
    • 2003
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

  • PDF

A Study on the Cold Formability of Drawn Dual-Phase Steels (신선 가공된 이상 조직강의 냉간 성형성에 대한 연구)

  • 박경수;최상우;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.84-89
    • /
    • 2004
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

Development of an Unparalleled Shape Weld Nut Optimized by Forging Analysis Tool (단조 해석을 통한 비대칭 날개면 용접 너트의 최적 공정 설계)

  • Park, J.H.;Seo, J.Y.;Seol, J.Y.;Hwang, W.S.;Lee, K.H.;Kim, J.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.81-86
    • /
    • 2018
  • In the cold forming process, it is not easy to fabricate a asymmetric type nut, due to the difficulty in the exact prediction of metal-flow. As we have identified, in that case, it often results in the various forging defects such as burrs, and an incomplete shape, as well as other problems because of this issue. In the current study, we introduce the development of an unparalleled shape Weld Nut by using a forging analysis tool (AFDEX). For the multi-forming machine, the optimized shapes of each intermediate product (step product) could be found by the use of a model for the prediction and analysis of various types, sizes and heights. Chiefly, forging tools were prepared based on the simulation results and an unparalleled shape could be prepared at one time without any burrs, incomplete shape and size.