• Title/Summary/Keyword: Cold climate

Search Result 447, Processing Time 0.029 seconds

Risk Analysis of Thaw Penetration Due to Global Climate Change in Cold Regions

  • Bae, Yoon-Shin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2009
  • A probabilistic approach may be adopted to predict freeze and thaw depths to account for the variability of (1) material properties, and (2) contemporary and future surface energy input parameters(e.g. air temperatures, cloud cover, snow cover) predicted with global climate models. To illustrate the probabilistic approach, an example of the predicted of thaw depths in cold regions is considered. More specifically, the Stefan equation is used together with the Monte Carlo simulation technique to make a probabilistic prediction of thaw penetration. The simulation results indicate that the variability in material properties, surface energy input parameters and temperature data can lead to significant uncertainty in predicting thaw penetration.

Temperature History of Wall Concrete with Heat Insulating Curing Method Subjected to Severly Cold Climate (혹한온도 조건에서의 양생방법 변화에 따른 벽체 콘크리트의 온도이력 특성)

  • Son, Ho-Jung;Han, Sang-Yoon;Cheong, Sang-Hyeon;Ahn, Samg-Ku;Han, Cheon-Goo;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.51-52
    • /
    • 2011
  • This study is to propose a curing method for a concrete wall structure under severe cold climate. The curing methods of using heated cable, heated panel and insulated form were applied. Results showed that the concrete cured by the heated cable resulted in the highest temperature history and the highest strength development at 28 days. Further, it is believed that the curing methods of the heated panel and insulated form are also recommendable for the resistance of the early frost damage on the concrete in practice.

  • PDF

Wind Corridor Analysis and Climate Evaluation with Biotop Map and Airborne LiDAR Data (비오톱 지도와 항공라이다 자료를 이용한 바람통로 분석 및 기후평가)

  • Kim, Yeon-Mee;An, Seung-Man;Moon, Soo-Young;Kim, Hyeon-Soo;Jang, Dae-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.148-160
    • /
    • 2012
  • The main purpose of this paper is to deliver a climate analysis and evaluation method based on GIS by using airborne LiDAR data and Biotop type map and to provide spatial information of climate analysis and evaluation based on Biotop type Map. At first stage, the area, slope, slope length, surface, wind corridor function and width, and obstacle factors were analyzed to obtain cold/fresh air production and wind corridor evaluation. In addition, climate evaluation was derived from those two results in the second stage. Airborne LiDAR data are useful in wind corridor analysis during the study. Correlation analysis results show that ColdAir_GRD grade was highly correlated with Surface_GRD (-0.967461139) and WindCorridor_ GRD was highly correlated with Function_GRD (-0.883883476) and Obstacle_GRD (-0.834057656). Climate Evaluation GRID was highly correlated with WindCorridor_GRD (0.927554516) than ColdAir_GRD (0.855051646). Visual validations of climate analysis and evaluation results were performed by using aerial ortho-photo image, which shows that the climate evaluation results were well related with in-situ condition. At the end, we applied climate analysis and evaluation by using Biotop map and airborne LiDAR data in Gwangmyung-Shiheung City, candidate for the Bogeumjari Housing District. The results show that the aerial percentile of the 1st Grade is 18.5%, 2nd Grade is 18.2%, 3rd Grade is 30.7%, 4th Grade is 25.2%, and 5th Grade is 7.4%. This study process provided both the spatial analysis and evaluation of climate information and statistics on behalf of each Biotop type.

Variation of Application Period of Cold Weather Concrete in Korea (우리나라 한중콘크리트 적용기간의 변화)

  • Han Min-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.237-245
    • /
    • 2005
  • In this paper, the changes of the period of cold weather concrete in Korea with the elapse of age are discussed to investigate the influence of elapse of age on period of cold weather concrete. The climate data of Korean Meteorological Administration(KMA) ranging from 1971 to 2000 was used. The period of cold weather concrete was calculated by following the specification of Korea Concrete Institute(KCI), American Concrete Institute(ACI) and Architectural Institute of Japan(AIJ), respectively. Previous research by the authors used the climate dada of KMA from 1961 to 1990 and research conducted by Kim M.H. used the climate data from 1931 to 1980 were also compared with the period of present paper. According to the results, in present paper, the period of cold weather concreting by KCI was calculated about 95days on average and the period by ACI was 101 days on average and the period by AIJI was 92days on average. For the variation of the period with the elapse of time, the period of cold weather concrete by KCI and ACI in present paper was shortened by as much as 5${\~}$6days compared with that of previous paper 10years ago. However, the period of cold weather concreting by AIJ did not exhibit a marked reduction in the period compared with that of previous paper by the author. But the period by Kim following AIJ exhibited a decrease in the period compared to the period by present paper by as much as 3days. For regional influence, the period of cold weather concreting in southern part of Korea was found to be much shorter than those at northern part. This may be due to the rising of mean temperature caused by global warming effect.

Seasonal Variation of the Surface Heat Budget in the Gumi Reservoir of Nakdong River (낙동강 구미 보의 수면 열수지 계절 변화)

  • Kim, Hak-Yun;Seo, Kwang-Su;Cho, Chang-Bum;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1057-1063
    • /
    • 2016
  • The heat budget is investigated in the Gumi Reservoir of the Nakdong river. In warm climate season, solar radiation effects play a important role in the change of water temperature. The features of the surface heat balance are almost derived by the latent heat flux and the solar radiation flux. On the other hand, in cold climate season, change of heat stored in the water is mainly dominated by latent and sensible heat transfer between water and air, since flux of solar radiation and loss of outgoing long wave radiation balance approximately. For the annual averages, net flux of radiation, evaporation(latent heat) loss are dominant in the Gumi reservoir. The evaporation losses are dominant from spring to early winter. This means that the Gumi reservoir rolls like a lake of thermal medium or deep depth.

An experimental performance analysis of a cold region stationary photovoltaic system

  • Choi, Wongyu;Warren, Ryan D.;Pate, Michael B.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.1-28
    • /
    • 2016
  • A grid-connected photovoltaic (PV) system comprised of multicrystalline silicon (mc-Si) modules was installed in a cold climate region in the U.S. This roof-mounted stationary PV system is a real-world application of PV for building energy generation in International Energy Conservation Code (IECC) Climate Zone 5 (and possibly similar climate zones such as 6, 7 and 8), and it served the purposes of research, demonstration, and education. The importance of this work is highlighted by the fact that there has been less emphasis on solar PV system in this region of the U.S. because of climate and latitude challenges. The system is equipped with an extensive data acquisition system capable of collecting performance and meteorological data while visually displaying real-time and historical data through an interactive online interface. Experimental data was collected and analyzed for the system over a one-year period with the focus of the study being on measurements of power production, energy generation, and efficiency. The annual average daily solar insolation incident upon the array was found to be $4.37kWh/m^2$. During the first year of operation, the PV system provided 5,801 kWh (1,264 kWh/kWp) of usable AC electrical energy, and it was found to operate at an annual average conversion efficiency and PR of 10.6 percent and 0.79, respectively. The annual average DC to AC conversion efficiency of the inverter was found to be 94 percent.

Evaluation of Mitigation Effect of Upo-Swamp on the Air temperature Variation with Nighttime Cooling Rate (야간 냉각율을 이용한 우포늪의 기온변화 완화효과 평가)

  • Park, Myung-Hee;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • In this study, we investigated the effects of Upo-swamp upon local thermal environment with nighttime cooling rate. To do this, we set up the AWS(Automatic Weather observation System) over the central part of Upo-swamp on the early October 2007. We conducted the study by comparing the AWS data with another weather data observed by several meteorological observations of the Korea Meteorological Administration located at the vicinity of Upo-swamp for one year. The air temperature of Upo-swamp was higher than that of the surrounding in cold-climate season. But it was opposite in warm-climate season. We confirmed that Upo-swamp roles to mitigate the daily and annual air temperature ranges. And the daily air temperature variation of Upo-swamp lagged behind the land one. This phenomenon represent that the heat reservoir capacity of Upo-swamp is much larger than that of the ground.

Phytohormnes producing Preussia sp. BSL-10 induce phytohormonal changes in tomato (Solanum lycopersium cv.) under divers temperature.

  • Al-Hosni, Khdija;Shahzad, Raheem;Kang, Sang-Mo;Lee, In-Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.202-202
    • /
    • 2017
  • Global climate change resulted in unwarranted change in global temperature and caused heat and cold stress, which are consider major threat to agriculture productivity around the world. The use of plant growth-promoting microbes is an eco-friendly strategy to counteract such stresses and confer tolerance to the plants. In current study, previously isolated endophytic fungi Preussia sp. BSL-10 has been found to produce phytohormones such as IAA and GA and as such, endophyte Preussia sp. BSL-10 found to induced tolerance against heat and cold stress. The results showed that under both heat and cold stress the plant growth parameter such as shoot, root length, shoot fresh weight and root fresh weight is higher in Preussia sp. BSL-10 treated plants as compare to free Preussia sp. BSL-10 control plants. In addition, the stress-sensitive endogenous ABA levels were significantly increased in Preussia sp. BSL-10 host plant. The current result suggest that the phytohormone-producing endophyte Preussia sp. BSL-10 can increase plant resistance toheat and cold stress, in turn improving agricultural productivity.

  • PDF

Development and Use of Digital Climate Models in Northern Gyunggi Province - I. Derivation of DCMs from Historical Climate Data and Local Land Surface Features (경기북부지역 정밀 수치기후도 제작 및 활용 - I. 수치기후도 제작)

  • 김성기;박중수;이은섭;장정희;정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.

Long-term pattern changes of sea surface temperature during summer and winter due to climate change in the Korea Waters

  • In-Seong Han;Joon-Soo Lee;Hae-Kun Jung
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.11
    • /
    • pp.639-648
    • /
    • 2023
  • The sea surface temperature (SST) and ocean heat content in the Korea Waters are gradually increased. Especially the increasing trend of annual mean SST in the Korea Water is higher about 2.6 times than the global mean during past 55 years (1968-2022). Before 2010s, the increasing trend of SST was led by winter season in the Korea Waters. However, this pattern was clearly changed after 2010s. The increasing trend of SST during summer is higher about 3.9 times than during winter after 2010s. We examine the long-term variations of several ocean and climate factors to understand the reasons for the long-term pattern changes of SST between summer and winter in recent. Tsushima warm current was significantly strengthened in summer compare to winter during past 33 years (1986-2018). The long-term patterns of Siberian High and East Asian Winter Monsoon were definitely changed before and after early- or mid-2000s. The intensities of those two climate factors was changed to the increasing trend or weakened decreasing trend from the distinctive decreasing trend. In addition, the extreme weather condition like the heatwave days and cold spell days in the Korea significantly increased since mid- or late-2000s. From these results, we can consider that the occurrences of frequent and intensified marine heatwaves during summer and marine cold spells during winter in the Korea Waters might be related with the long-term pattern change of SST, which should be caused by the long-term change of climate factors and advection heat, in a few decade.