• Title/Summary/Keyword: Cold Spray

Search Result 188, Processing Time 0.035 seconds

Enhancement of Downward-Facing Saturated Boiling Heat Transfer by the Cold Spray Technique

  • Sohag, Faruk A.;Beck, Faith R.;Mohanta, Lokanath;Cheung, Fan-Bill;Segall, Albert E.;Eden, Timothy J.;Potter, John K.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.124-133
    • /
    • 2017
  • In-vessel retention by passive external reactor vessel cooling under severe accident conditions is a viable approach for retention of radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as "cold spray" that can readily be applied to operating and advanced reactors was developed to form a microporous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated in-vessel retention by passive external reactor vessel cooling conditions using test vessels with and without cold spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local critical heat flux (CHF) values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of cold spray coatings could enhance the local CHF limit for downward-facing boiling by > 88%.

A novel approach for manufacturing oxide dispersion strengthened (ODS) steel cladding tubes using cold spray technology

  • Maier, Benjamin;Lenling, Mia;Yeom, Hwasung;Johnson, Greg;Maloy, Stuart;Sridharan, Kumar
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1069-1074
    • /
    • 2019
  • A novel fabrication method of oxide dispersion strengthened (ODS) steel cladding tubes for advanced fast reactors has been investigated using the cold spray powder-based materials deposition process. Cold spraying has the potential advantage for rapidly fabricating ODS cladding tubes in comparison with the conventional multi-step extrusion process. A gas atomized spherical 14YWT (Fe-14%Cr, 3%W, 0.4%Ti, 0.2% Y, 0.01%O) powder was sprayed on a rotating cylindrical 6061-T6 aluminum mandrel using nitrogen as the propellant gas. The powder lacked the oxygen content needed to precipitate the nanoclusters in ODS steel, therefore this work was intended to serve as a proof-of-concept study to demonstrate that free-standing steel cladding tubes with prototypical ODS composition could be manufactured using the cold spray process. The spray process produced an approximately 1-mm thick, dense 14YWT deposit on the aluminum-alloy tube. After surface polishing of the 14YWT deposit to obtain desired cladding thickness and surface roughness, the aluminum-alloy mandrel was dissolved in an alkaline medium to leave behind a free-standing ODS tube. The as-fabricated cladding tube was annealed at $1000^{\circ}C$ for 1 h in an argon atmosphere to improve the overall mechanical properties of the cladding.

A Study on the Spray Characteristics of the Cold-Fog Spray with Ultrasonic Forcing (초음파적용 상온연무기의 분무특성에 관한 연구)

  • Song Min-Geun;Lee Kyung-Youl;Son Sung-Woo;La Woo-Jung;Ju Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.299-302
    • /
    • 2002
  • Characteristics of the twin fluid spray with ultrasonic forcing are examined in order to obtain the high efficiency of cold fog spray of the automatic pest control machine which has been widely used for the equipment cultivation recently. An electrostrictive vibrator of PZT BLT and a magnetostrictive vibrator of ${\pi}type$ with 28 kHz are applied as the ultrasonic transducer. All experiments are made and observed in 4 methods of spray ; a conventional spray method without ultrasonic forcing, an indirect vibration method with ultrasonic forcing, an improving duality method by ultrasonic forced within liquid, and a combined use method with both of the indirect vibration method and the improving quality method. In results, It was clarified that the ultrasonic effects the atomization of spray droplets and its efficiency is about $10{\%}$ and especially much more in the case of the combined use method.

  • PDF

Study on Metal/Diamond Binary Composite Coatings by Cold Spray

  • Kim, H.J.;Jung, D.H.;Jang, J.H.;Lee, C.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.240-241
    • /
    • 2006
  • Metal/diamond binary composite coatings on Al substrate without grit blasting were deposited by cold spray process with insitu powder preheating. Microstructural characterization of the as-sprayed coatings with different diamond size, strength and with/without Ti coating on diamond was carried out by OM and SEM. The assessment of basic properties such as tensile bond strength and hardness of the coatings, and the deposition efficiency was also carried out. Particular attention on the composite coatings was on the diamond fracture phenomenon during the cold spray deposition and the interface bonding between the diamond and the Fe-based metal matrix.

  • PDF

Effect of Gun Nozzle Geometry, Increase in the Entrance Convergent Section Length and Powder Injection Position on Cold Sprayed Titanium Coatings

  • Sakaki, Kazuhiko;Shinkai, Shuhei;Ebara, Nobuharu;Shimizu, Yasuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.238-239
    • /
    • 2006
  • Nozzle geometry influences gas dynamics making sprayed particle behavior one of the most important parameters in cold spray process. Gas flows at the entrance convergent section of the nozzle takes place at relatively high temperature and are subsonic. Thus, this region is a very suitable environment for heating spray particle. In this study, numerical simulation and experiments were conducted to investigate the effect of nozzle contour, entrance geometry of nozzle and powder injection position at nozzle on the cold spray process. The process changes were observed through numerical simulation studies and the results were used to find a correlation with coating properties.

  • PDF

Manufacturing and Macroscopic Properties of Cold Sprayed Cu-Ga Coating Material for Sputtering Target

  • Jin, Young-Min;Jeon, Min-Gwang;Park, Dong-Yong;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.245-252
    • /
    • 2013
  • This study attempted to manufacture a Cu-Ga coating layer via the cold spray process and to investigate the applicability of the layer as a sputtering target material. In addition, changes made to the microstructure and properties of the layer due to annealing heat treatment were evaluated, compared, and analyzed. The results showed that coating layers with a thickness of 520 mm could be manufactured via the cold spray process under optimal conditions. With the Cu-Ga coating layer, the ${\alpha}$-Cu and $Cu_3Ga$ were found to exist inside the layer regardless of annealing heat treatment. The microstructure that was minute and inhomogeneous prior to thermal treatment changed to homogeneous and dense with a more clear division of phases. A sputtering test was actually conducted using the sputtering target Cu-Ga coating layer (~2 mm thickness) that was additionally manufactured via the cold-spray coating process. Consequently, this test result confirmed that the cold sprayed Cu-Ga coating layer may be applied as a sputtering target material.

Study on Atomization Characteristics of Shear Coaxial Injectors (전단동축형 분사기들의 미립화 특성에 대한 연구)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Six shear coaxial injectors with different recess length and taper angle were manufactured. Cold-flow tests on the injectors were performed at room temperature and pressure using water and air as simulants. By changing the water mass flow rate and air mass flow rate, spray images were taken under single-injection and bi-injection. Breakup length and spray angle were analyzed from instantaneous and averaged spray images using image processing techniques. For all the injectors, the breakup length generally decreased as the momentum flux ratio increased at the same gas mass flow rate. The injectors with 7.5° taper angle usually had the longest breakup length and the smallest spray angle. When the taper angle was 15° or more, it hardly affected breakup length and spray angle. The recess length did not influence breakup length but its effect on spray angle depended on the taper angle.

Melting Point of Amorphous Copper Phase on Crystalline Silicon Solar Cells During Cold Spray using Molecular Dynamics Calculations (분자 동역학 계산을 통한 결정질 실리콘 태양전지 기판에 콜드 스프레이 전극 형성 시 발생되는 비정질 구리상에 대한 용융 온도 변화 연구)

  • Kim, Soo Min;Kang, Byungjun;Jeong, Sujeong;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.61-64
    • /
    • 2015
  • In solar industry, numerous researchers reported about cold spray method among various electrode formation technic, but there are no known a bonding mechanism of metal powder. In this study, a cross-section of copper electrode formed by cold spray method was observed and heterogeneous phase between silicon substrate and copper electrode was analyzed using morphology observation technic. SEM and TEM analysis were performed to analyze a crystallinity and distribution shape of heterogeneous copper phase. Molecular dynamics simulation was performed to calculate glass transition temperature of copper metal. In the result, amorphous copper phase was observed near interface between silicon substrate and metal electrode. The results of the molecular dynamics simulation show that an amorphous copper phase could be formed at a temperature below the melting point of copper because cold spraying resulted in a lower glass transition temperature.

A Study of Design of $H_2O_2$/Kerosene Ignition Injector and Spray Characteristics (과산화수소/케로신 점화용 분사기 설계 및 분무특성에 관한 연구)

  • Kim, Bo-Yeon;Hwang, Oh-Sik;Lee, Yang-Suk;Ko, Young-Seong;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.37-40
    • /
    • 2009
  • This study was performed to design of $H_2O_2$/Kerosene catalyst ignition injector and cold flow test to measure the mass flow rate and spray angle. Mass flow rate and spray angle were measured by designed injector through cold flow test. Result of test kerosene mass flow rate was measured 12.88 g/s and 40 deg of spray angle at pressure drop 3 bar as same as design point. And hydrogen peroxide was measured 94.39 g/s at pressure drop 1 bar smaller than design point.

  • PDF