• Title/Summary/Keyword: Cold Isostatic Pressing(CIP)

Search Result 24, Processing Time 0.026 seconds

Crystal growth and pinning enhancement of directionally melt-textured$(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y$ oxides in air

  • Kim So-Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.188-192
    • /
    • 2005
  • High $T_c(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y[(YNS)-123]$ superconductors with/without $CeO_2$ additive were systematically investigated by the zone melt growth process in air. Cylindrical green rods of (YNS)-123 oxides were fabricated by cold isostatic pressing (CIP) method using rubber mould. A sample prepared by this method showed well-textured microstructure, and $(Y_{0.5}Nd_{0.25}Sm_{0.25})_2BaCuO_5[(YNS)211]$ nonsuperconducting inclusions were uniformly dispersed in large $(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y$[(YNS)123] superconducting matrix. In this study, optimum melting temperature and growth rate were $1100^{\circ}C$ and 3 mm/hr, respectively. The directionally melt-textured (YNS)-123 sample with $CeO_2$ additive showed an onset critical temperature $(T_c)\;T_c{\geq}93K$ and sharp superconducting transition.

Study for the Development of Fe-NbC Composites by Advanced PM Techniques

  • Gordo, E.;Gomez, B.;Gonzalez, R.;Ruiz-Navas, E.M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.118-119
    • /
    • 2006
  • The development of Fe-based metal matrix composites (MMCs) with high content of hard phase has been approached by combining the use of advanced powder metallurgy techniques like high-energy milling (HEM), cold isostatic pressing (CIP) and vacuum sinterings. A 30% vol. of NbC particles was mixed with Fe powder by HEM in a planetary mill during 10h, characteristing the powder by the observation of morphology and microstructure by scanning electron microscopy (SEM). After of sintering process the variation of density, hardness,carbon content and the microstructural changes observed, permits to find the optimal conditions of processing. Afterwards, a heat treatment study was performed to study the hardenability of the composite.

  • PDF

Superconducting Properties of (Sm/Y)-Ba-Cu-0 High Tc Composite Superconductors with CeO2 Additive by Zone-Melt Textured Growth (국부용융성장법으로 제조한 (Sm/Y)-Ba-Cu-0계 고온복합초전도체의 CeO2첨가에 따른 초전도특성)

  • 김소정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.269-274
    • /
    • 2002
  • (Sm/Y)-Ba-Cu-O system high Tc composite superconductors with/without $CeO_2$ additive were directionally grown by zone-melting process, haying large temperature gradient, In air atmosphere. Cylindrical green rods of $({Sm/y})_{1.8}Ba_{2.4}Cu_{3.4}O_x$ [(Sm/Y)1.8] composite oxides by cold isostatic pressing(CIP) method using rubber mold were fabricated. The microstructure and superconducting properties were investigated by XRD, SEM, TEM and SQUID magnetometer. The size of nonsuperconducting $({Sm/y})_2BaCuO_5$ inclusions of the melt-textured (Sm/Y)1.8 sample with CeO$_2$ additive were remarkably reduced and uniformly distributed within the superconducting (Sm/Y)1.8 matrix. Both samples, with/without $CeO_2$ additive, showed an onset Tc $\geq$ 90 K and sharp superconducting transition. The critical current density Jc value of the $CeO_2$ addictive were $1{\times}10^5A/\textrm{cm}^2$ in 77 K, 0 Tesla.

Microstructure and Electrical Properties of (YNdSm)-Ba-Cu-O High Tc Composite Superconductors by Zone Melting Process (존멜팅법으로 제조한 (YNdSm)-Ba-Cu-O계 고온복합초전도체의 미세구조 및 전기적 특성)

  • Kim, So-Jung;Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.110-113
    • /
    • 2016
  • (YNdSm)-Ba-Cu-O system high Tc composite superconductors were directionally grown by zone melting process, having large temperature gradient, in air atmosphere. Cylindrical green rods of $(YNdSm)_{1.8}Ba_{2.4}Cu_{3.4}O_x$ [(YNS)1.8]composite oxides by CIP (cold isostatic pressing) method using rubber mold were fabricated. The microstructure and superconducting properties were investigated by XRD, TEM and SQUID magnetometer. The size of nonsuperconducting $(YNdSm)_2BaCuO_5$ inclusions of the melt-textured (YNS)1.8 sample with $CeO_2$ additive were remarkably reduced and uniformly distributed within the superconducting (YNS)1.8 matrix. (YNS)1.8 samples, with / without $CeO_2$ additive, showed an onset $T_c{\geq}90K$ and sharp superconducting transition. The critical current density $J_c$ value of the (YNdSm)1.8 superconductor with $CeO_2$ additive were 840 A, $1.2{\times}104A/cm^2$ in 77 K, 0 Tesla by direct current transport method.

Effect of Compaction Methods on the Microstructures and Mechanical Properties of α-Alumina (α-알루미나의 미세구조 및 기계적 성질에 미치는 성형방법의 영향)

  • Baek, Jeong Hyun;Lee, Sung gap;Chun, Myoung Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.333-340
    • /
    • 2019
  • The effects of compaction methods on the sintering density, microstructures, and mechanical properties were investigated in ${\alpha}-alumina$ ceramics. ${\alpha}-Alumina$ powders were granulated with a 10% aqueous solution of polyvinyl alcohol (PVA). Uniaxially pressed (UAP) and cold isostatic-pressed (CIP) samples were prepared by pressing uniaxially at a pressure of 1 ton for 1 min, and isostatically at 200 MPa for 15 min, respectively. Subsequently, both types of samples were sintered at $1,200^{\circ}C$, $1,300^{\circ}C$, $1,400^{\circ}C$, $1,450^{\circ}C$, $1,500^{\circ}C$, $1,550^{\circ}C$, and $1,600^{\circ}C$ at a rate of $5^{\circ}C/min$ for 2 h. The CIP samples were better than the UAP samples for all properties measured, such as the sintering density, Vicker's hardness, and toughness. The CIP sample sintered at $1,400^{\circ}C$ showed the maximum Vicker's hardness and toughness; this may be attributed to the competing effects of a decrease in porosity and the growth of grains with increasing sintering temperature.

Adaptability of zirconia core fabricated by cold isostatic pressing (냉간 정수압 성형법으로 제작된 지르코니아 코어의 적합도에 관한 연구)

  • Seo, Yoon-Jeong;Yun, Kwi-Dug;Kim, Hyun-Seung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.143-150
    • /
    • 2010
  • Purpose: The purpose of this study is to fabricate the new zirconia block (CNU block) and to evaluate fit of core and porcelain veneered zirconia crown. Material and methods: The experimental blocks were fabricated from the commercial ytrria-stabilized zirconia powder (KZ-3YE Type A). The powder was uniaxial pressing and the green bodies were conducted using the Cold Isostatic Pressing. The zirconia blocks were presintered at $1040^{\circ}C$ and the final sintering was performed at $1450^{\circ}C$. The Kavo Everest ZS $blank{(R)}$ (KaVo, Biberach/ $Ri{\beta}$.) was used as a control group. The linear shrinkage of CNU block and Kavo block were compared. Twenty-one cores for porcelain veneered crowns were fabricated with CAD/CAM system ($Everest{(R)}$, Biberach/ $Ri{\beta}$.). Group I; seven cores fabricated from Kavo blocks, Group II; seven cores fabricated from CNU blocks, Group III; seven cores from CNU blocks and porcelain veneering for crowns. All specimens were cemented and sectioned into two planes; diagonal and bucco-lingual. The measurement of the marginal, internal, and occlusal fit was carried out using SEM ($S-4800^{(R)}$) at $30{\times}$. The results were analyzed by one-way ANOVA test. Results: The linear shrinkage of the CNU block and the KaVo block was 19.00% and 20.09%. The marginal gap of cores ($29.67{\pm}6.58{\mu}m$) fabricated from CNU blocks showed significantly smaller than that of the cores of Kavo blocks ($36.84{\pm}7.18{\mu}m$) (P < .05). The internal gaps of the porcelain veneered crowns ($32.23{\pm}6.33{\mu}m$) were larger than those of the other two groups ($37.57{\pm}6.81{\mu}m$ and $38.14{\pm}6.81{\mu}m$). Conclusion: No statistically significant difference was found in between experimental groups and control group. The experimental groups in marginal gap showed significantly smaller than the control group.

Fabrication of Micro Component of Metallic Nano Powder Using Polymer Mold (폴리머 몰드를 이용한 금속 나노분말의 미세부품 제조)

  • Lee, Woo-Seok;Kim, Sang-Phil;Lee, Hye-Moon;Bae, Dong-Sik;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.202-207
    • /
    • 2007
  • Novel polymer mold process for fabrication of microcomponents using metal nanopowders was developed and experimentally optimized. Polymer mold for forming green components was produced by using a hard master mold and polydimethylsiloxane (PDMS). In the preparation of metallic powder premix for the green components without any defect, 90 wt.% 17-4PH statinless steel nanopowders and 10 wt.% organic binder were mixed by a ball milling process. The green components with very clear gear shape were formed by filling the powder premix into the PDMS soft mold in surrounding at about $100^{\circ}C$. Cold isostatic pressing (CIP) was very potent process to decrease a porosity in the sintered microcomponent. The microgear fabricated by the improved process showed a good dimension tolerance of about 1.2%.

Phase stability and Sintered Properties of 1.5mol% Yttria-stabilized Zirconia Ceramics Fabricated by Low Temperature Sintering (저온 열처리로 제작된 1.5 mol% 이트리아 안정화 지르코니아 세라믹스의 상 안정성 및 소결물성)

  • Kyung Tae Kim;Han Cheol Choe;Jeong Sik Park;Jong Kook Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Phase stability of tetragonal crystals in yttria-stabilized zirconia ceramics is dependent on the content of yttria and the heat-treatment condition, related with mechanical properties. In this study, we fabricated the 1.5 mol% yttria-stabilized zirconia (1.5Y-YSZ) ceramics by cold isostatic pressing (CIP) and post-sintering at temperature range of 1200 to 1350℃ for 2 hours and investigated the sintered properties and microstructural evolution. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of 1.5Y-YSZ ceramics were mainly dependent on the sintering temperature. Maximum sintered density of 99.4 % and average grain size of 200-300 nm could be obtained from the heat-treatment condition above sintering temperature at 1300℃ for 2 hours, possessing the superior mechanical hardness with 1200 Hv. However, phase stability of tetragonal grains in 1.5 YSZ ceramics is very low, inducing the phase transformation to monoclinic crystals on specimen surface during cooling after heat-treatment.

Microstructure of the (Nd/Y)-Ba-Cu-O superconductors by floating zone melt growth process (부유대역용융성장법을 이용한 (Nd/Y)-Ba-Cu-O계 초전도체의 미세구조)

  • 김소정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.83-87
    • /
    • 2003
  • $(Nd/Y)_{1.8}Ba_{}2.4Cu_{3.4}O_{7-x}$high $T_c$ superconductor was directionally grown by floating Bone melt growth process with a large temperature gradient in air. Cylindrical green rods of (Nd/Y)1.8 oxides were fabricated by cold isostatic pressing (CIP) method using rubber mold. Microstructures were observed by SEM and TEM and superconducting properties were measured by a SQUID magnetometer. Nonsuperconducting $(Nd/Y)_2BaCuO_5$ inclusions were uniformly distributed within the superconducting $(Nd/Y)Ba_2Cu_3O_x$ matrix. The directionally melt-textured (Nd/Y) 1.8 superconductor showed an onset Tc $\geq$ 90 K and a sharp superconducting transition.

Melt growth and superconducting properties of Sm-doped YBCO super-conductor by zone melting method (국부용융성장법으로 제조된 Sm이 첨가된 YBCO 초전도체의 용융온도 및 성장 속도에 따른 미세구조)

  • 김소정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.68-72
    • /
    • 2004
  • Sm-doped YBCO high $T_c$ superconductor was directionally grown by zone melt growth process in air atmosphere. Cylindrical green rods of $(Sm/Y)_{1.8}Ba_{2.4}Cu_{3.4}O_{7-x}$[(Sm/Y)1.8] oxides were fabricated by cold isostatic pressing (CIP) method using rubber mold. Based on the variation of melting temperature and growth rate, the microstructure and superconducting properties were systematically measured by using optical micrographs, TEM and SQUID magnetometer. In this study optimum melting temperature and growth rate were $1085^{\circ}C$ and 3.5 mm/hr respectively. Nonsuperconducting $(Sm/Y)_2BaCuO_5$ inclusions of (Sm/Y)1.8 superconductor were uniformly distributed within the superconducting (Sm/Y) $Ba_2Cu_3O^{7-x}$ matrix. The directionally melt-textured (Sm/Y)1.8 superconductor showed an onset $T_c$ $\geq$ 90K and sharp superconducting transition.