DOI QR코드

DOI QR Code

Effect of Compaction Methods on the Microstructures and Mechanical Properties of α-Alumina

α-알루미나의 미세구조 및 기계적 성질에 미치는 성형방법의 영향

  • Baek, Jeong Hyun (Nano Convergence Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Sung gap (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Chun, Myoung Pyo (Nano Convergence Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • 백정현 (한국세라믹기술원 나노소재공정센터) ;
  • 이성갑 (경상대학교 공학원 나노신소재융합공학과) ;
  • 전명표 (한국세라믹기술원 나노소재공정센터)
  • Received : 2019.03.22
  • Accepted : 2019.05.09
  • Published : 2019.07.01

Abstract

The effects of compaction methods on the sintering density, microstructures, and mechanical properties were investigated in ${\alpha}-alumina$ ceramics. ${\alpha}-Alumina$ powders were granulated with a 10% aqueous solution of polyvinyl alcohol (PVA). Uniaxially pressed (UAP) and cold isostatic-pressed (CIP) samples were prepared by pressing uniaxially at a pressure of 1 ton for 1 min, and isostatically at 200 MPa for 15 min, respectively. Subsequently, both types of samples were sintered at $1,200^{\circ}C$, $1,300^{\circ}C$, $1,400^{\circ}C$, $1,450^{\circ}C$, $1,500^{\circ}C$, $1,550^{\circ}C$, and $1,600^{\circ}C$ at a rate of $5^{\circ}C/min$ for 2 h. The CIP samples were better than the UAP samples for all properties measured, such as the sintering density, Vicker's hardness, and toughness. The CIP sample sintered at $1,400^{\circ}C$ showed the maximum Vicker's hardness and toughness; this may be attributed to the competing effects of a decrease in porosity and the growth of grains with increasing sintering temperature.

Keywords

JJJRCC_2019_v32n4_333_f0001.png 이미지

Fig. 1. Fabrication process of α-Al2O3 ceramics.

JJJRCC_2019_v32n4_333_f0002.png 이미지

Fig. 2. X-ray diffraction pattern of α-Alumina powder.

JJJRCC_2019_v32n4_333_f0003.png 이미지

Fig. 3. The scanning electron microscopy (SEM) ×10,000 images of α-Alumina powders.

JJJRCC_2019_v32n4_333_f0004.png 이미지

Fig. 4. Particle size distribution of alumina powder were taken by the particle size analyzer (PSA).

JJJRCC_2019_v32n4_333_f0005.png 이미지

Fig. 5. Variations of their shirinkage rate as a function of sintering temperature for the disk samples which were pressed uni-axially and isostatically, respectively.

JJJRCC_2019_v32n4_333_f0006.png 이미지

Fig. 6. The scanning electron microscopy (SEM) ×10,000 images of samples uniaxial pressed and sintered at (a) 1,200℃, (b) 1,300℃, (c) 1,400℃, (d) 1,450℃, (e) 1,500℃, and (f) 1,600℃ and isostatical pressed and sintered at (g) 1,200℃, (h) 1,300℃, (i) 1,400℃, (j) 1,450℃, (k) 1,500℃, and (l) 1,600℃ for 2 h.

JJJRCC_2019_v32n4_333_f0007.png 이미지

Fig. 7. Variations of their sintered (a) densities, and (b) porosity as a function of sintering temperature for the disk samples which were pressed uniaxially and isostatically, respectively.

JJJRCC_2019_v32n4_333_f0008.png 이미지

Fig. 9. Indentations of vicker’s hardness tester of samples uniaxially pressed and sintered at (a) 1,200℃, (a) 1,300℃, (c) 1,400℃, (d) 1,450℃, (e) 1,500℃, and (f) 1,600℃ and uniaxially pressed and sintered at (g) 1,200℃, (g) 1,300℃, (g) 1,400℃, (g) 1,450℃, (g) 1,500℃, and (g) 1,600℃.

JJJRCC_2019_v32n4_333_f0009.png 이미지

Fig. 10. Realationship between grain size and vickers hardness of Al2O3 sintered at various temperatures which were pressed uniaxially and isostatically, respectively.

JJJRCC_2019_v32n4_333_f0010.png 이미지

Fig. 8. Variations of their (a) vickers hardness and (b) fracture toughness as a function of sintering temperature for the disk samples which were pressed uni-axially and isostatically, respectively.

Table 1. Variations of their green density, and sintered density and porosity as a function of sintering temperature for the disk samples which were pressed uniaxially and isostatically, respectively.

JJJRCC_2019_v32n4_333_t0001.png 이미지

References

  1. B. An, W. Wang, G. Ji, S. Gan, G. Gao, J. Xu, and G. Li, Energy, 35, 45 (2010). [DOI: https://doi.org/10.1016/j.energy.2009.08.027]
  2. R. G. Munro, J. Am. Ceram. Soc., 80, 1919 (1997). [DOI:https://doi.org/10.1111/j.1151-2916.1997.tb03074.x]
  3. W. L. Suchanek, J. Am. Ceram. Soc., 93, 399 (2010). [DOI:https://doi.org/10.1111/j.1551-2916.2009.03399.x]
  4. Y. Yoshizawa, K, Hirao, and S. Kanzaki, J. Eur. Ceram. Soc., 24, 325 (2004). [DOI: https://doi.org/10.1016/S0955-2219(03)00226-7]
  5. S. van der Gijp, J. E. ten Elshof, O. Steigelmann, and H. Verweij, J. Am. Ceram. Soc., 83, 2610 (2000). [DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01597.x]
  6. H. L. Marcus and M. E. Fine, J. Am. Ceram. Soc., 55, 568 (1972). [DOI: https://doi.org/10.1111/j.1151-2916.1972.tb13438.x]
  7. M. L. Gall, A. M. Huntz, B. Lesage, C. Monty, and J. Bernardini, J. Mater. Sci., 30, 201 (1995). [DOI: https://doi.org/10.1007/BF00352151]
  8. D. Chakravarty, S. Bysakh, K. Muraleedharan, T. N. Rao, and R. Sundaresan, J. Am. Ceram. Soc., 91, 203 (2008). [DOI: https://doi.org/10.1111/j.1551-2916.2007.02094.x]
  9. J. Liu, H. Yan, and K. Jiang, Ceram. Int., 39, 6215 (2013). [DOI: https://doi.org/10.1016/j.ceramint.2013.01.041]
  10. J. Sun, L. Gao, and W. Li, Chem, Mater., 14, 5169 (2002). [DOI: https://doi.org/10.1021/cm020736q]
  11. I. Ahmad, H. Cao, H. Chen, H. Zhao, A. Kennedy, and Y. Q. Zhu, J. Eur. Ceram. Soc., 30, 865 (2010). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.09.032]
  12. L. Gao, H. Z. Wang, J. S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa, and S.D.D.L. Torre, J. Eur. Ceram. Soc., 19, 609 (1999). [DOI: https://doi.org/10.1016/S0955-2219(98)00232-5]
  13. A. R. Yazdi, H. Baharvandi, H. Abdizadeh, J. Purasad, A. Fathi, and H. Ahmadi, Mater. Des., 37, 251 (2012). [DOI:https://doi.org/10.1016/j.matdes.2011.12.038]
  14. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc., 85, 1921 (2002). [DOI: https://doi.org/10.1111/j.1151-2916.2002.tb00381.x]
  15. H. Mizuta, K. Oda, Y. Shibasaki, M. Maeda, M. Machida, and K. Ohshima, J. Am. Ceram. Soc., 75, 469 (1992). [DOI: https://doi.org/10.1111/j.1151-2916.1992.tb08203.x]
  16. D. E. Niesz, KONA Powder Part. J., 14, 44 (1996). [DOI:https://doi.org/10.14356/kona.1996009]
  17. N. Ozkan and B. J. Briscoe, J. Eur. Ceram. Soc., 17, 697 (1997). [DOI: https://doi.org/10.1016/S0955-2219(96)00090-8]
  18. A. Eksi and M. K. Kulekci, Metalurgija, 43, 129 (2004). [DOI: http://hrcak.srce.hr/128360]
  19. M.L.V. Mahesh, V.V.B. Prasad, and A. R. James, Eur. Phys. J. B, 89, 108 (2016). [DOI: https://doi.org/10.1140/epjb/e2016-60390-6]
  20. D. W. Shin, D. H. Yoon, C. J. Kim, Y. S. Chung, and K. H. Auh, J. Ceram. Soc. Jpn., 106, 363 (1998). [DOI: https://doi.org/10.2109/jcersj.106.363]
  21. R. Armstrong, I. Codd, R. M. Douthwaite, and N. J. Petch, Philos. Mag. A, 7, 45 (1962). [DOI: https://doi.org/10.1080/14786436208201857]
  22. A. G. Evans and E. A. Charles, J. Am. Ceram. Soc., 59, 371 (1976). [DOI: https://doi.org/10.1111/j.1151-2916.1976.tb10991.x]
  23. E. O. Hall, Proc. Phys. Soc., London, Sect. B, 64, 747 (1951). [DOI: https://doi.org/10.1088/0370-1301/64/9/303]
  24. A. M. Glezer, N. A. Shurygina, E. N. Blinova, I. E. Permyakova, and S. A. Firstov, J. Mater. Sci. Technol., 31, 91 (2015). [DOI:https://doi.org/10.1016/j.jmst.2014.09.006]