• 제목/요약/키워드: Cold Flow Test

검색결과 222건 처리시간 0.026초

냉동 물류 창고 내 도크시스템을 통한 에너지 손실량 분석 (Analysis of Amount of Energy Loss for a Dock System in the Cold Distribution Center)

  • 양성준;김영주;허준;김태성
    • 설비공학논문집
    • /
    • 제29권8호
    • /
    • pp.419-428
    • /
    • 2017
  • In this study, energy loss due to ventilation load in the dock system was analyzed through simulation. Also, flow generated in the dock system of the warehouse was measured using manufactured measuring devices. Numerical simulation was conducted by simulating the most common picking tasks by examining the actual working environment. Incompressible and unsteady turbulent flows were assumed, and the turbulence model was the k-e standard model. Proper grid was selected through grid dependency test. Measurement was conducted using Honeywell and Vaisala sensors, and flow and temperature inside the warehouse were measured and compared with simulation results to validate simulation. When comparing amount of loss occurring in two hours and amount of loss occurring in 15 minutes, docking time of the former was eight times longer but energy loss was 3.8 times lower. Ventilation load occurring during the initial period after opening docking system accounted for a large proportion of total ventilation load. Also, comparing the load when the dock was closed and the load when the truck was parked, ventilation load was significantly higher than load due to heat conduction from the wall. Therefore, in improving the docking system, it is effective to reduce the gap by improving compatibility of the docking system and truck, rather than wall material.

RETF 액체산소 공급설비 및 엔진 수류시험

  • 한영민;조남경;김승한;정용갑;박성진;이광진;김영한;문일윤
    • 항공우주기술
    • /
    • 제1권2호
    • /
    • pp.123-131
    • /
    • 2002
  • 본 논문에서는 KSR-III 주 엔진 연소시험설비를 활용한 수류시험 및 연소시험 과정에서 극저온 추진제인 액체산소의 냉각단계, 충진단계, 연소시험 공급 단계에서 액체산소의 상태량을 시험설비의 각 위치에서 분석함으로써 향후 안정된 공급을 위한 설비 및 운용조건을 선정하는데 주안점을 두었다. 이를 위해 각 단계에서 기체와 극저온 추진제의 상호 작용이 발생하는 가압탱크에서의 가압기체 및 액체산소의 상태량을 파악하였으며, 연소시험시 엔진 메니폴드에서의 액체산소의 상태량을 분석하였다. 또한 냉각 및 충진시에 대기압 vent에 액체산소의 거동을 파악함으로서 냉각을 효율적으로 할 수 있는 방안을 분석하였다. 또한 산소 공급 설비와 로켓엔진 매니폴드에 정압센서와 동압센서를 장착하여 1KHz의 sampling rate로 측정하였다. 오리피스 사이즈는 지름 32.5mm 38mm, 가압 압력 23Bar, 29Bar, 41Bar에 대해 시험을 수행하였다. 오리피스 사이즈를 증가시키고 가압 압력을 낮춘 결과 엔진 내에 공급되는 액체산소의 섭동량이 감소하는 것이 관찰되었다.

  • PDF

On the validation of ATHLET 3-D features for the simulation of multidimensional flows in horizontal geometries under single-phase subcooled conditions

  • Diaz-Pescador, E.;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3567-3579
    • /
    • 2022
  • This paper provides an assessment of fluid transport and mixing processes inside the primary circuit of the test facility ROCOM through the numerical simulation of Test 2.1 with the system code ATHLET. The experiment represents an asymmetric injection of cold and non-borated water into the reactor coolant system (RCS) of a pressurized water reactor (PWR) to restore core cooling, an emergency procedure which may subsequently trigger a core re-criticality. The injection takes place at low velocity under single-phase subcooled conditions and presents a major challenge for the simulation in lumped parameter codes, due to multidimensional effects in horizontal piping and vessel arising from density gradients and gravity forces. Aiming at further validating ATHLET 3-D capabilities against horizontal geometries, the experiment conditions are applied to a ROCOM model, which includes a newly developed horizontal pipe object to enhance code prediction inside coolant loops. The obtained results show code strong simulation capabilities to represent multidimensional flows. Enhanced prediction is observed at the vessel inlet compared to traditional 1-D approach, whereas mixing overprediction from the descending denser plume is observed at the upper-half downcomer region, which leads to eventual deviations at the core inlet.

AI 기반 동파시기 예측을 위한 수도계량기 동파시험장치 개발 (Development of a water meter freeze test device for predicting the freezing time based on AI)

  • 김국일;안상병;김진훈;홍성택
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.233-234
    • /
    • 2021
  • 겨울철 한파로 인한 수도계량기의 동파는 수돗물 공급 중지, 유출된 후 결빙에 따른 각종 안전사고 유발 및 복구에 따른 비용 발생 등 여러 가지 불편과 문제를 야기시킨다. 본 연구에서는 수도계량기가 실제 동파가 발생되는 환경과 유사한 시험장치를 개발하여 동파영향인자인 온도, 습도, 유량, 압력, 밸브개도, 펌프 가동상태 등을 변화시켜 반복시험을 수행하고자 한다. 이를 통해 얻어지는 데이터를 기반으로 동파 영향인자 간 상관관계를 AI 기술을 적용해 동파시기를 예측하고자 한다.

  • PDF

제트베인 최적 설계를 위한 공기역학 특성 연구 (The study of aerodynamic characteristics to design of optimum jetvane)

  • 신완순;길경섭;이택상;박종호;김윤곤
    • 한국추진공학회지
    • /
    • 제5권1호
    • /
    • pp.26-33
    • /
    • 2001
  • 제트베인 추력편향장치는 노즐 뒤에 장착되어 노즐에서 분사되는 초음속 제트의 유동방향을 편향시킴으로써 하나의 노즐로 피치, 요, 롤 방향의 제어를 할 수 있는 장치이다. 제어력을 얻기 위해 초음속 유동중에 노출되어 있는 제트베인에는 열 및 공기역학적 하중이 작용하게 되며, 제트베인의 형상 및 편향각에 따라 나타나는 충격파 및 제트베인 상호 유동간섭으로 인해 비행 추력 손실 및 측력의 크기에 영향을 미치게 된다. 본 연구에서는 마하 2.88 노즐 중에 놓인 제트베인의 피치 및 요, 롤 방향의 특성을 규명하기 위해 6 종의 제트베인을 선정하고, 각 방향에 따른 제트베인 편향각 $0^{\cire}$~$25^{\cire}$ 범위에서 $5^{\cire}$ 간격으로 유동시험을 각각 수행하였다. 또한, 유동해석을 병행하여 제트베인간의 유동 간섭 특성을 분석하였다. 연구 결과 제트베인간의 상호간섭은 나타나지 않으며, 제트베인의 공기역학적 특성은 현과 리드의 길이 비에 크게 좌우되고, 최대 추력손실은 롤 제어시 축추력의 17%로 나타났다.

  • PDF

열진공 챔버용 극저온 블로워 설계 및 성능평가 (Design and Performance Tests of a Cryogenic Blower for a Thermal Vacuum Chamber)

  • 서희준;조혁진;박성욱;문귀원;허환일
    • 한국항공우주학회지
    • /
    • 제43권11호
    • /
    • pp.1008-1015
    • /
    • 2015
  • 위성체의 지상 검증 시험에는 열진공 챔버가 사용되며, 열제어 시스템은 열진공 챔버의 핵심이라고 할 수 있다. 특히, 기체 질소를 이용한 폐회로 열제어 시스템의 성능은 극저온 블로워의 성능에 의해 결정된다. 본 연구의 최종 목표는 설계 요구조건 $-150^{\circ}C{\sim}150^{\circ}C$의 온도 조건, 유량 150 CFM, 0.5 bara 이상의 차압을 갖는 극저온 블로워를 개발하는 것으로, 1차원 해석툴 및 CFD를 이용한 성능해석을 통해 임펠러를 설계 하였으며, 구동부와 유체부의 열전달 방지를 위한 열장벽, 모터의 과열 방지를 위한 냉각 시스템 등이 설계되었다. 표준대기상태에서 실험을 통해 성능을 검증하였으며, 최종적으로 열진공 챔버내에 설치하여 운영 조건에서 극저온 블로워의 성능을 확인하였다.

Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Lab-Scale Cold Model Combustor

  • Shin, D.;Park, S.;Jeon, B.;Yu, T.;Hwang, J.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2284-2291
    • /
    • 2006
  • The present study investigates gas residence time and mixing characteristics for various swirl numbers generated by injection of secondary air into a lab-scale cylindrical combustor. Fine dust particles and butane gas were injected into the test chamber to study the gas residence time and mixing characteristics, respectively. The mixing characteristics were evaluated by standard deviation value of trace gas concentration at different measurement points. The measurement points were located 25 mm above the secondary air injection position. The trace gas concentration was detected by a gas analyzer. The gas residence time was estimated by measuring the temporal pressure difference across a filter media where the particles were captured. The swirl number of 20 for secondary air injection angle of 5$^{\circ}$ gave the best condition: long gas residence time and good mixing performance. Numerical calculations were also carried out to study the physical meanings of the experimental results, which showed good agreement with numerical results.

알루미늄 7075 복합압출재에 대한 공정해석 및 설계 (Analysis and Design of a Forming Porcess for Combined Extrusion with Aluminum AIIoy 7075)

  • 김진복;변상규
    • 소성∙가공
    • /
    • 제6권5호
    • /
    • pp.446-455
    • /
    • 1997
  • A Combined extrusion operation consists of forward and backward extrusion forming and it is possible to make the process be simple by employing it. But the metal flow pattern induced by the operation is hard to analyze accurately because the flows are non-steady, which have at least two directions dependent upon each other. So engineers in the industrial factories had conducted the two extrusion operations separately. A new process was designed by the industrial expert for forming of an alu-minum preform using the combined extrusion operation. In this study, experiments and finite element analysis was carried out to determine the process parameters. Through the preliminary experiment, it was shown that warm forming condition was more desirable than cold or hot ones. And optimal shape of initial billet could be also determined. From the compatibility test, bonde-lube was chosen as the optimal lubricant and 20$0^{\circ}C$ as the material temperature by the inspection of micro-structure. The operation was simulated by the rigid-plastic finite element method to examine the metal flow. Disap-pearing of dead metal zone was observed as the punch fell down and desirable shape was obtained from the one operation. As a result of this study, 7 operations could be reduced and 225% of material saved.

  • PDF

언더레일의 롤포밍 공정 시뮬레이션에 관한 연구 (A Study on Roll Forming Simulation of Under Rail)

  • 정상화;이상희;김광호;김재상;김종태
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.78-85
    • /
    • 2008
  • Roll forming process is one of the most widely used processes in the world for forming metals. It can manufacture goods of the uniform cross section throughout the continuous processing. However, process analysis is very difficult because of the inherent complexity. Therefore, time is consuming and much money are needed for manufacturing goods. In order to overcome this difficulty, a new computational method based on the rigid-plastic finite element method is developed for the analysis of roll forming process. In this paper, the design of roll forming process and the simulation are performed to manufacture the upper member at under rail composed of three members. The cold rolled carbon steel sheet(SCP-1) is used in this simulation, and a flow stress equation is set up by conducting the tensile test. The upper member is designed using two types of design for a excellent design. Each types are simulated and compared with the strain distribution using SHAPE-RF software. In addition, the numerical magnitude of bow and camber which are the buckling phenomenon is estimated.

Effect of cement as mineral filler on the performance development of emulsified asphalt concrete

  • Liu, Baoju;Wu, Xiang;Shi, Jinyan;Wu, Xiaolong;Jiang, Junyi;Qin, Jiali
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.515-526
    • /
    • 2020
  • Cold-mixed asphalt mixture is a widely recommended asphalt pavement materials with potentially economic and environmental benefits. Due to the reduction of natural non-renewable mineral resources, powder minerals with similar properties are considered as new mineral fillers in asphalt mixtures. This study explored the feasibility of using cement to replace natural limestone powder (LP) in emulsified asphalt concrete modified by styrene-butadiene styrene copolymer. The experimental tests, including compressive strength, Marshall stability as well as moisture susceptibility test, were used to investigate the mechanical properties, the Marshall stability, flow value, as well as the moisture damage. In addition, the influence of material composition on the performance of asphalt concrete is explained by the microstructure evolution of the pore structure, the interface transition zone (ITZ), and the micromorphology. Due to mineralogical reactivity of cement, its replacement part of LP improved the mechanical properties, Marshall stability, but it will reduce the moisture susceptibility and flow value. This is because with the increase of the cement substitution rate, the pore structure of the asphalt concrete is refined, the width of ITZ becomes smaller, and the microstructure is more compact. In addition, asphalt concrete with a larger nominal particle size (AC-16) has relatively better performance.