• Title/Summary/Keyword: Cold Flow Test

Search Result 222, Processing Time 0.021 seconds

Development of an insulation performance measurement unit for full-scale LNG cargo containment system using heat flow meter method

  • Lee, Jin-sung;Kim, Kyung-su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.458-467
    • /
    • 2018
  • Efforts have been made in this paper to develop the measuring device for the insulation performance of full scale NO96 LNG CCS. The facility was designed to maintain environmental conditions which are similar to operation conditions of full scale LNG CCS. In the facility, the heat sink boundary was kept cryogenic temperature by cold chamber which contains liquefied nitrogen and heat source boundary was made by external case heated by natural convection. Heat Flow Meter method (HFM) was applied to this facility, hence Heat Flux Sensors (HFS) were attached to specimen. The equivalent thermal conductivity of full scale NO96 unit box was targeted to measure and PUF of same size was used for the calibration test. Additionally, the finite element analysis was carried out to check the performance of the developed test facility and experimental results were also compared with those predicted by the numerical method.

A Numerical Study of the Turbulent Flow Characteristics in the Inlet Transition Square Duct Based on Roof Configuration (4각 안내덕트 루프형상에 의한 난류특성변화 수치해석)

  • Yoo, Geun-Jong;Choi, Hoon-Ki;Choi, Kee-Lim;Shin, Byeong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.541-551
    • /
    • 2009
  • Configuration of the inlet transition square duct (hereinafter referred to as "transition duct") for heat recovery steam generator (hereinafter referred to as "HRSG") in combined cycle power plant is limited by the construction type of HRSG and plant site condition. The main purpose of the present study is to analyze the effect of a variation in turbulent flow pattern by roof slop angle change of transition duct for horizontal HRSG, which is influencing heat flux in heat transfer structure to the finned tube bank. In this study, a computational fluid dynamics(CFD) is applied to predict turbulent flow pattern and comparisons are made to 1/12th scale cold model test data for verification. Re-normalization group theory (RNG) based k-$\epsilon$ turbulent model, which improves the accuracy for rapidly strained flow and swirling flow in comparison with standard k-$\epsilon$ model, is used for the results cited in this study. To reduce the amount of computer resources required for modeling the finned tube bank, a porous media model is used.

Experimental Study on the Spray Characteristics of Aerated Impinging Jets (기체주입 충돌제트의 분무특성에 관한 실험적 연구)

  • Lee, Keunseok;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

Flow Condensation Heat Transfer Characteristic of Hydrocarbon Refrigerants and DME in Horizontal Plain Tube (탄화수소계 냉매들과 DME의 수평 평활관내 흐름 응축 열전달 특성)

  • Park, Ki-Jung;Lee, Min-Hang;Park, Hyun-Shin;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.545-554
    • /
    • 2007
  • Flow condensation heat transfer coefficients(HTCs) of R22, propylene, propane, DME and isobutane are measured on a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 9.52 mm outside diameter and 530 mm length. The refrigerant is cooled by passing cold water through an annulus surrounding the test section. Tests are performed at a fixed refrigerant saturation temperature of $40{\pm}0.2^{\circ}C$ with mass fluxes of 100, 200, $300kg/m^2s$ and heat flux of $7.3\sim7.7kW/m^2$. The data are obtained in the vapor Quality range of $10\sim90%$. Test results show that at same mass flux the flow condensation HTCs of propylene, propane, DME and isobutane are higher than those of R22 by up to 46.8%, 53.3%, 93.5% and 61.6% respectively. Also well-known correlations developed based upon conventional fluorocarbon refrigerants predict the present data within a mean deviation of 30%. Finally, the pressure drop increase as the mass flux and Quality increase and isobutane shows the highest pressure drop due to its lowest vapor pressure among the fluids tested.

Estimation of Hardness using DEFORM$^{TM}$ in SKH9 High Speed Steel (DEFORM$^{TM}$을 이용한 SKH9 고속도공구강의 경도 예측)

  • Park, Joon Hong;Sung, Jang Hyun;Kim, Young Hee;Lee, Hae Woo;Jeon, Eun Chan;Park, Young Chul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.175-180
    • /
    • 2007
  • The hardness of cold-forged products is in close relationship with its effective strain. This study presented the estimating method of hardness for cold-forged SKH9 products without hardness tests in view of resistance to plastic deformation using finite element code, DEFORM$^{TM}$. The flow stress equation obtained from the compression test was only used as a basic data to estimate the relationship between effective strain and hardness. In addition, this new estimating method was applied to the cold-forged product which was widely used in industrial field to show the feasibility. As a result, the predicted hardness numbers through FE simulation showed good agreement with the measured hardness numbers. It is possible to estimate the hardness not by hardness tests, but by only computer simulations for the deformed products. Also, effective strain values were possibly estimated by measuring hardness numbers, and vice versa.

Optimization of hydraulic section of irrigation canals in cold regions based on a practical model for frost heave

  • Wang, Songhe;Wang, Qinze;An, Peng;Yang, Yugui;Qi, Jilin;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.133-143
    • /
    • 2019
  • An optimal hydraulic section is critical for irrigated water conservancy in seasonal frozen ground due to a large proportion of water leakage, as investigated by in-situ surveys. This is highly correlated with the frost heave of underlain soils in cold season. This paper firstly derived a practical model for frost heave of clayey soils, with temperature dependent thermal indexes incorporating phase change effect. A model test carried out on clay was used to verify the rationality of the model. A novel approach for optimizing the cross-section of irrigation canals in cold regions was suggested with live updated geometry characterized by three unique geometric constraints including slope of canal, ratio of practical flow section to the optimal and lining thickness. Allowable frost heave deformation and tensile stress in canal lining are utilized as standard in computation iterating with geometry updating while the construction cost per unit length is regarded as the eventual target in optimization. A typical section along the Jinghui irrigation canal was selected to be optimized with the above requirements satisfied. Results prove that the optimized hydraulic section exhibits smaller frost heave deformation, lower tensile stress and lower construction cost.

Stress Relaxation Behavior of Cold-worked and Annealed Zircaloy-4 Tubing

  • Rheem, K.S.;Choi, C.B.;Park, W.K.
    • Nuclear Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.203-207
    • /
    • 1976
  • Strain rate dependence of the flow stress of cold-worked and annealed Zircaloy-4 was studied by stress relaxation test in temperature range of 20$0^{\circ}C$ to 45$0^{\circ}C$. The In $\sigma$-ln i curves for various temperatures were straight in the eirange of 10$^{-5}$ to 10$^{-3}$ sec$^{-1}$ . From the slope of a curve strain rate sensitivity m was obtained. The m in cold-worked Zircaloy-4 had a minimum value at 30$0^{\circ}C$, while m in annealed Zircaloy-4 had two minimum values, one at 30$0^{\circ}C$ and the other at 45$0^{\circ}C$. It was found that the temperatures of the minimum m are consistent with the temperatures of strain ageing peaks. The minimum m at 30$0^{\circ}C$ is considered to be due to strain ageing owing to the pinning of glide dislocations by oxygen atoms, while the minimum m at 45$0^{\circ}C$ for annealed specimen is attributed to iron atoms.

  • PDF

Development of Gear-Type Vane Dampers to Replace Link-Type Vane Dampers in Marine FD Fans (선박용 강제통풍 팬의 기어식 베인댐퍼 성능평가)

  • Hur, Nam-Soo;Jang, Sung-Cheol;Lee, Kyung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.216-222
    • /
    • 2016
  • Thus, this study aimed to develop a gear-type vane damper in order to replace the link-type vane damper. To achieve this goal, the torque generated in a gear-type vane damper was analyzed, and a structural analysis was conducted. In addition, the fluid flow was analyzed according to the changes in the vane's angle, and experimental tests such as a dry-heat test and cold test were conducted considering the operating conditions of the vessels. Moreover, an appropriate actuator was selected for the developed gear-type vane damper, and studies on the reduction in the backlash due to the facing-pressure adjustment length and flow rate and leakage test due to the vane's angle were conducted.

Starting Characteristics of Supersonic Exhaust Diffuser for Altitude Simulation Testing (고공환경 모사를 위한 초음속 디퓨저의 시동 특성 분석)

  • Kim, Yong-Wook;Lee, Jung-Ho;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.117-121
    • /
    • 2012
  • Upper stage propulsion system designed for operation in the upper atmosphere should be tested under nozzle full flow conditions to verify its performance on the ground. KARI has carried out high altitude simulation test of KSLV-I kick motor using cylindrical supersonic exhaust diffuser. Also cold and hot flow test for the sub-scaled diffuser have been conducted to verify the design of real scale diffuser and to study its operating characteristics. This paper deals with the results obtained from these high altitude simulation tests.

Design and Cold Test of Semi-Freejet High Altitude Environment Simulation Test Facility for High-Speed Vehicle (초고속 비행체를 위한 준 자유흐름식 고공환경 모사시험설비의 설계 및 상온실험)

  • Lee, Seongmin;Yu, Isang;Park, Jinsu;Ko, Youngsung;Kim, Sunjin;Lee, Jungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.115-124
    • /
    • 2018
  • In this study, a cold flow test was carried out on a high-speed vehicle facility with a high-altitude environment simulator. Variable test was carried out according to the blockage ratio, angle, and length of the test model. It is confirmed that the blockage rate can be operated in the range of 40%, and that the model should be selected at an angle of 45 degrees or less. The variables of length are less dominant compared to the variables of blockage rate and angle. Through this, a database is obtained according to the parameters of the conical model of the high-speed vehicle test facility.