• Title/Summary/Keyword: Coils

Search Result 1,140, Processing Time 0.027 seconds

Analysis of Fault Current limiting Characteristics According to Fault Type in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current limiting (사고종류에 따른 삼상 일체화된 자속구속형 SFCL의 사고전류제한특성 분석)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.54-56
    • /
    • 2005
  • In this paper, we investigated the quench characteristics of HTSC elements in the integrated three-phase flux-lock type SFCL according to fault types such as the single-line-to-ground fault, the double-line-to-ground fault, the line-to-line fault and the three-line-to-ground fault. The integrated three-phase flux-lock type SFCL was the upgrade version of the single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is operated under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single-phase among three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases quench irrespective of the fault type, which reduces the current of fault phase as well as the current of sound phase. It was observed that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

Quench Characteristics of HTSC Elements according to fault types in Integrated Three-Phase (삼상일체화된 자속구속형 SFCL의 사고종류에 따른 소자들의 퀜치 특성)

  • Park, Chung-Ryul;Lee, Jong-Hwa;Park, Sig;Du, Ho-Ik;Lim, Sung-Hun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.960-962
    • /
    • 2005
  • In this paper, we investigated the quench characteristics of high-Tc superconducting(HTSC) elements in the integrated three-phase flux-lock type superconducting fault current limiter(SFCL) according to fault types such as the single-line-to-ground fault, the double-line-to-ground fault, the line-to-line fault and the triple-line-to-ground fault. The integrated three-phase flux-lock type SFCL is an upgrade version of single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of a three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single one of three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases to quench irrespective of the fault type, which reduces the current in fault phase as well as the current of sound phase. It was obtained that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

Pulmonary Hypertension in a Dog after Embolic Coil Placement for Interventional Occlusion of Patent Ductus Arteriosus (동맥관 개존증 개에서 색전 코일의 중재적 시술 후 발생한 폐성 고혈압)

  • Lee, Bareun;Kim, Jiyoun;Hyun, Changbaig
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.507-510
    • /
    • 2014
  • An 8 month-old female Pomeranian dog was presented with major complaints of heart murmur and cardiomegaly. Diagnostic study found the left-to-right patent ductus arteriosus (PDA) with moderate heart failure (ISACHC II). The PDA occlusion was successfully accomplished using a $5mm{\times}3loops$ embolic coil through right femoral artery. Two months later, the dog came back to clinic with marked hypotension, severe diarrhea and pleural effusion. Diagnostic study found severe pulmonary hypertension and tricuspid regurgitation. The clinical condition was controlled by the administration of sildenafil (3 mg/kg, PO, TID). However, the dog was expired by dislodged embolic coil and inconsistent medication by the owner. Postmortem study found the pulmonary hypertension was occurred by the abnormally dislodged embolic coil. Although the embolic coil is widely used for PDA occlusion in toy dogs with PDA, the more careful evaluation for the size and shape of PDA is necessary to minimize the risk of dislodgement of pre-placed coil.

Drawing of Impedance Plane Diagrams of Absolute Coil ECT Signals by finite Element Analysis (유한요소해석에 의한 절대코일 와전류 신호의 임피던스 평면도 작성)

  • Shin, Young-Kil;Lee, Yun-Tai;Lee, Jeong-Ho;Song, Myung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.315-324
    • /
    • 2004
  • In eddy current testing(ECT), differential probes have been frequently used since they .an reduce the number of parameters that influence ECT signals. However, differential signal is actually the difference of the two coils' impedance so that signal prediction and interpretation are not easy, On the other hand, absolute coil signal is rather straightforward to predict and analyze. Therefore, combined use of the two types of signals would increase the test reliability. In this paper, absolute coil signals from Inconel plate and tubes are predicted by the finite element analysis and efforts of lift-off, fill-factor, conductivity, operating frequency, test specimen thickness, inner diameter defects, and outer diameter defects are investigated. As a result, various impedance plane diagrams are drawn and analyzed. Significant practical knowldege about absolute signals is accumulated and similar characteristics of the two types of signal could be understood. Finally, slope angle versus defect depth calibration corves are prepared for three different frequencies.

A Low-noise Multichannel Magnetocardiogram System for the Diagnosis of Heart Electric Activity

  • Lee, Yong-Ho;Kim, Ki-Woong;Kim, Jin-Mok;Kwon, Hyuk-Chan;Yu, Kwon-Kyu;Kim, In-Seon;Park, Yong-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.4
    • /
    • pp.154-163
    • /
    • 2006
  • A 64-channel magnetocardiogram (MCG) system using low-noise superconducting quantum interference device (SQUID) planar gradiometers was developed for the measurements of cardiac magnetic fields generated by the heart electric activity. Owing to high flux-to-voltage transfers of double relaxation oscillation SQUID (DROS) sensors, the flux-locked loop electronics for SQUID operation could be made simpler than that of conventional DC SQUIDs, and the SQUID control was done automatically through a fiber-optic cable. The pickup coils are first-order planar gradiometers with a baseline of 4 em. The insert has 64 planar gradiometers as the sensing channels and were arranged to measure MCG field components tangential to the chest surface. When the 64-channel insert was in operation everyday, the average boil-off rate of the dewar was 3.6 Lid. The noise spectrum of the SQUID planar gradiometer system was about 5 fT$_{rms}$/$\checkmark$Hz at 100 Hz, operated inside a moderately shielded room. The MCG measurements were done at a sampling rate of 500 Hz or 1 kHz, and realtime display of MCG traces and heart rate were displayed. After the acquisition, magnetic field mapping and current mapping could be done. From the magnetic and current information, parameters for the diagnosis of myocardial ischemia were evaluated to be compared with other diagnostic methods.

Prediction for Underwater Static Magnetic Field Signature Generated by Hull and Internal Structure for Ferromagnetic Ship (강자성 함정 선체 및 내부 장비에 의한 수중 정자기장 신호 예측)

  • Yang, Chang-Seob;Chung, Hyun-Ju;Ju, Hye-Sun;Jeon, Jae-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.167-173
    • /
    • 2011
  • Underwater static magnetic field signature for the naval ship has been widely used as the detonating source of the influence mine system because it is possible to make an accurate target detection in the near field although the magnetic field falls off relatively fast with distance in comparison with the underwater radiated noise signal. In this paper, we describe the prediction results about the underwater static magnetic field by the ferromagnetic hull, the internal structures and the main on-board equipment for the target vessel using the commercial FEM software. Also we analyze the degaussing effectiveness for the target vessel through the degaussing coils arrangement.

A Study on Fingerprint-Based Coil Alignment Improvement Technique for Magnetic Resonant Wireless Power Transfer System (핑거프린트 방식의 자기 공진형 무선전력전송 코일 정렬 상태 개선 기법 연구)

  • Kim, Sungjae;Lee, Euibum;Ku, Hyunchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.38-44
    • /
    • 2019
  • This paper proposes fingerprint-based positioning methods which can be used in a magnetic resonant wireless power transfer(WPT) system and verifies their performance. A new receiver coil with small orthogonal auxiliary coils is proposed to measure magnetic field signals in three axial directions. The magnitude and phase characteristics of the three-axis electromotive force can be obtained by using the proposed coil. To predict a position with the measured values, we propose a lookup table-based method and linear discriminant analysis-based method. For verification, the proposed methods are applied to predict 75 positions of the 6.78 MHz WPT system, and the performances such as accuracy and computation time are compared.

Feasibility and efficacy of coil embolization for middle cerebral artery aneurysms

  • Choi, Jae Young;Choi, Chang Hwa;Ko, Jun Kyeung;Lee, Jae Il;Huh, Chae Wook;Lee, Tae Hong
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.3
    • /
    • pp.208-218
    • /
    • 2019
  • Background: The anatomy of middle cerebral artery (MCA) aneurysms has been noted to be unfavorable for endovascular treatment. The purpose of this study was to assess the feasibility and efficacy of coiling for MCA aneurysms. Methods: From January 2004 to December 2015, 72 MCA aneurysms (38 unruptured and 34 ruptured) in 67 patients were treated with coils. Treatment-related complications, clinical outcomes, and immediate and follow-up angiographic outcomes were retrospectively analyzed. Results: Aneurysms were located at the MCA bifurcation (n=60), 1st segment (M1, n=8), and 2nd segment (M2, n=4). Sixty-nine aneurysms (95.8%) were treated by neck remodeling techniques using multi-catheter (n=44), balloon (n=14), stent (n=8), or combination of these (n=3). Only 3 aneurysms were treated by single-catheter technique. Angiographic results were 66 (91.7%) complete, 5 (6.9%) remnant neck, and 1 (1.4%) incomplete occlusion. Procedural complications included aneurysm rupture (n=1), asymptomatic coil migration to the distal vessel (n=1), and acute thromboembolism (n=10) consisting of 8 asymptomatic and 2 symptomatic events. Treatment-related permanent morbidity and mortality rates were 4.5% and 3.0%, respectively. There was no bleeding on clinical follow-up (mean, 29 months; range, 6-108 months). Follow-up angiographic results (mean, 26 months; range, 6-96 months) in patients included 1 major and 3 minor recanalizations. Conclusion: Coiling of MCA aneurysms could be a technically feasible and clinically effective treatment strategy with acceptable angiographic and clinical outcomes. However, the safety and efficacy of this technique as compared to surgical clipping remains to be ascertained.

Performance Analysis of 6.78MHz Current Mode Class D Power Amplifier According to Load Impedance Variation (부하 임피던스 변화에 따른 6.78MHz 전류모드 D급 전력증폭기 특성 해석)

  • Go, Seok-Hyeon;Park, Dae-kil;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.166-171
    • /
    • 2019
  • This paper has designed a current mode class D power amplifier to increase the transmission efficiency of a 6.78 MHz wireless power transfer (WPT) transmitter and to ensure stable characteristics even when the transmitting and receiving coil intervals change. By reducing the loss due to the parasitic capacitor component of the transistor, which limits the theoretical efficiency of the linear amplifier, this research has improved the efficiency of the power amplifier. The circuit design simulator was used to design the high efficiency amplifier, and the power output and efficiency characteristics according to the load impedance change have been simulated and verified. In the simulation, 42.1 dBm output and 95% efficiency was designed at DC bias 30 V. The power amplifier was fabricated and showed 91% efficiency at the output of 42.1 dBm (16 W). The transmitting and receiving coils were fabricated for wireless power transfer of the drone, and the maximum power added efficiency was 88% and the output power was $42.1dBm{\pm}1.7dB$ according to the load change causing from the coil intervals.

Implementation of Wireless Power Transmission System for Multiple Receivers Considering Load Impedance Variation (부하 임피던스 변화를 고려한 복수 수신기 무선전력전송 구현)

  • Kim, Young Hyun;Park, Dae Kil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2018
  • This paper proposes a single-input multiple-output (SIMO) self-resonant wireless power transmission system for transmitting power to multiple receivers and the characteristics are simulated and measured. A 600 mm diameter transmission single loop, a 600 mm diameter helical transmission resonant coil, an external diameter 900 mm planar spiral reception resonant coil, and an $80{\times}60mm^2$ flat plate square coil as a receiver are used to form a wireless power transmission system 600 mm away with the table structure. For optimal characteristics, the wireless power transmission coils are designed by EM simulation and equivalent circuit analysis, and the characteristics are simulated and measured. The variation of the efficiency with distance from the center of the spiral resonant coil is analyzed and the measured efficiency is 57% for one receiver and for the two receivers, the efficiency is 37% for each receiver.