• 제목/요약/키워드: Coil winding optimization

검색결과 7건 처리시간 0.023초

Evolution Startegy를 이용한 Bobbin형 편향코일의 권선분포 최적화 (Optimization of Bobbin winding type Deflection Yoke Wire Distribution By Using Evolution Startegy)

  • 조명철;강병훈;고창섭;주관정
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.130-132
    • /
    • 1994
  • Recently, a Deflection Yoke(DY) is designed in the bobbin-seperator-coil-winding type for high-definite CRT and high-efficient DY of wide vision TV or High Definite TV. This paper presents an optimization or bobbin-seperator-coil-winding type yoke's coil distribution for minimizing gap between desired and practical deflections of electron beams using by Evolution Strategy.

  • PDF

Optimization of the Deflection Yoke Coil for Color Display Tubes

  • Im, Chang-Hwan;Jung, Hyun-Kyo;Jung, Kwang-Sig;Cho, Yoon-Hyoung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권3호
    • /
    • pp.81-85
    • /
    • 2001
  • Processes for optimizing the coil shape of deflection yoke are proposed A very accurate and practical winding modeler is developed and volume integral equation method (VIEM) is used for field calculation. Two steps of optimizations are done by using (1+1) evolution strategy. Those are dimensional optimization and pin-position optimization Various techniques are applied for reducing computational time for the optimization.

Analysis of Half-coiled Short-pitch Windings with Different Phase Belt for Multiphase Bearingless Motor

  • Li, Bingnan;Huang, Jin;Kong, Wubin;Zhao, Lihang
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.162-169
    • /
    • 2014
  • The analysis and comparation of the half-coiled short-pitch windings with different phase belt are presented in the paper. The half-coiled short-pitch windings can supply the odd and even harmonics simultaneously, which can be applied in multiphase bearingless motor (MBLM). The space harmonic distribution of the half-coiled short-pitch windings with two kinds of phase belt is studied wi th respect to different coil pitch, and the suitable coil pitch can be selected from the analysis results to reduce the additional radial force and torque pulse. The two kinds of half-coiled short-pitch windings are applied to the five- and six-phase bearingless motor, and the comparation from the Finite Element Method (FEM) results shows that the winding with $2{\pi}/m$ phase belt is fit for the five phase bearingless motor and the winding with ${\pi}/m$ phase belt is suitable for the six phase bearingless motor. Finally, a five phase surface-mounted permanent magnet (PM) bearingless motor is built and the experimental results are presented to verify the validity and feasibility of the analysis. The results presented in this paper will give useful guidelines for design optimization of the MBLM.

별도전원으로 여자되는 팬케이크 권선형 고온초전도 마그넷의 제작과 특성 시험 (Fabrication and Test Results of an HTS Magnet with Pancake Windings Excited by Multiple Power Sources)

  • 이광연;강명훈;이용석;이희준;차귀수
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.384-389
    • /
    • 2008
  • The cental magnetic field of an HTS magnet consisting of pancake windings can be increased if the magnet is excited by multiple power sources. Multiple power sources enable all pancake windings to conduct their critical currents. The HTS magnet consisting of pancake windings was excited by separate power sources in this paper. Critical currents of each pancake winding were determined by using optimization technique. Fabrication of the BSCCO magnet consisting of 10 pancake windings is described and test results of the BSCCO magnet are given. Central magnetic field and perpendicular magnetic field of the magnet excited by multiple power sources were compared with those of the magnet excited by a single power source.

자속 분리법을 이용한 동극형 자기베어링의 고장강건 제어 (Fault Tolerant Control of Homopolar Magnetic Bearings Using Flux Isolation)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제17권11호
    • /
    • pp.1102-1111
    • /
    • 2007
  • The theory for a fault-tolerant control of homopolar magnetic bearings is developed. New coil winding law is utilized such that control fluxes are isolated for an 8-pole homopolar magnetic bearing. Decoupling chokes are not required for the fault tolerant magnetic bearing since C-core fluxes are isolated. If some of the coils or power amplifiers suddenly fail, the remaining coil currents change via a distribution matrix such that the same magnetic forces are maintained before and after failure. Lagrange multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrix that maximizes the load capacity of the failed bearing. Some numerical examples of distribution matrices are provided to illustrate the theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events while currents and fluxes change significantly.

Efficiency Optimization with a Novel Magnetic-Circuit Model for Inductive Power Transfer in EVs

  • Tang, Yunyu;Zhu, Fan;Ma, Hao
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.309-322
    • /
    • 2018
  • The technology of inductive power transfer has been proved to be a promising solution in many applications especially in electric vehicle (EV) charging systems, due to its features of safety and convenience. However, loosely coupled transformers lead to the system efficiency not coming up to the expectation at the present time. Therefore, at first, the magnetic core losses are calculated with a novel magnetic-circuit model instead of the commonly used finite-element-method (FEM) simulations. The parameters in the model can be obtained with a one-time FEM simulation, which makes the calculation process expeditious. When compared with traditional methods, the model proposed in the paper is much less time-consuming and relatively accurate. These merits have been verified by experimental results. Furthermore, with the proposed loss calculation model, the system is optimized by parameter sweeping, such as the operating frequency and winding turns. Specifically, rather than a predesigned switching frequency, a more efficiency-optimized frequency for the series-parallel (SP) compensation topology is detected and a detailed investigation has been presented accordingly. The optimized system is capable of an efficiency that is greater than 93% at a coil separation distance of 200mm and coil dimensions of $600mm{\times}400mm$.