Browse > Article
http://dx.doi.org/10.5370/JEET.2014.9.1.162

Analysis of Half-coiled Short-pitch Windings with Different Phase Belt for Multiphase Bearingless Motor  

Li, Bingnan (Dept. of Electrical Engineering, Zhejiang University)
Huang, Jin (Dept. of Electrical Engineering, Zhejiang University)
Kong, Wubin (Dept. of Electrical Engineering, Zhejiang University)
Zhao, Lihang (Dept. of Electrical Engineering, Zhejiang University)
Publication Information
Journal of Electrical Engineering and Technology / v.9, no.1, 2014 , pp. 162-169 More about this Journal
Abstract
The analysis and comparation of the half-coiled short-pitch windings with different phase belt are presented in the paper. The half-coiled short-pitch windings can supply the odd and even harmonics simultaneously, which can be applied in multiphase bearingless motor (MBLM). The space harmonic distribution of the half-coiled short-pitch windings with two kinds of phase belt is studied wi th respect to different coil pitch, and the suitable coil pitch can be selected from the analysis results to reduce the additional radial force and torque pulse. The two kinds of half-coiled short-pitch windings are applied to the five- and six-phase bearingless motor, and the comparation from the Finite Element Method (FEM) results shows that the winding with $2{\pi}/m$ phase belt is fit for the five phase bearingless motor and the winding with ${\pi}/m$ phase belt is suitable for the six phase bearingless motor. Finally, a five phase surface-mounted permanent magnet (PM) bearingless motor is built and the experimental results are presented to verify the validity and feasibility of the analysis. The results presented in this paper will give useful guidelines for design optimization of the MBLM.
Keywords
Bearingless motor; Finite Element Method (FEM); Half-coiled short-pitch winding; Multiphase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Raggl, B. Warberger, T. Nussbaumer, S. Burger, and J. W. Kolar, "Robust angle-sensorless control of a PMSM bearingless pump," IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 2076-2085, Jun. 2009.   DOI   ScienceOn
2 M. Ooshima, and C. Takeuchi, "Magnetic Suspension Performance of a Bearingless Brushless DC Motor for Small Liquid Pumps,", IEEE Tran. Indu. Appl. Vol. 47, no.1, pp. 72-78, Jan-Feb. 2011.   DOI   ScienceOn
3 T. Reichert, T. Nussbaumer, and J. W. Kolar, "Bearingless 300-W PMSM for bioreactor mixing," IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1376-1388, Mar. 2012.   DOI   ScienceOn
4 B. Warberger, R. Kaelin, T. Nussbaumer and J. W. Kolar, "50-N.m/2500-W Bearingless Motor for High-Purity Pharmaceutical Mixing," IEEE Trans. Ind. Electron., vol. 59, no. 5, pp. 2236-2247, May 2012.   DOI   ScienceOn
5 A. Chiba, T. Fukao, O. Ichikawa, M. Ooshima, M. Takemoto and D. G. Dorrell, Magnetic Bearings and Bearingless Drives, Amsterdam, The Netherlands: Newnes, 2005.
6 T. Hiromi, T. Katou, A. Chiba, M. A. Rahman. and T. Fukao, "A Novel Magnetic Suspension-Force Compensation in Bearingless Induction-Motor Drive With Squirrel-Cage Rotor," IEEE Trans. Ind. Appl. Vol. 43, no. 1, pp.66-76. Jan/Feb. 2007.   DOI   ScienceOn
7 X. Cao, and Z. Q. Deng, "A Full-Period Generating Mode for Bearingless Switched Reluctance Generators," IEEE Trans. Appl. Supercond. Vol. 20, no. 3, pp.1072-1076, Jun. 2010   DOI   ScienceOn
8 H. Wang, Y. Wang, X. Liu, and J.-W. Ahn, "Design of novel bearingless switched reluctance motor," IET Electric Power Appl., vol. 6, no. 2, pp. 73-81, Feb. 2012.   DOI   ScienceOn
9 E. F. Rodriguez, and J. A. Santisteban, "An improved control system for a split winding bearingless induction motor," IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3401-3408, Aug. 2011.
10 V. F. Victor, F. O. Quintaes, J. S. B. Lopes, L. D. S. Junior, A. S. Lock, and A. O. Salazar, "Analysis and Study of a Bearingless AC Motor Type Divided Winding Based on a Conventional Squirrel Cage Induction Motor," IEEE Trans. Magn., vol. 48, NO. 11, pp. 3571-3574, Nov. 2012.   DOI   ScienceOn
11 M. Osama and T. A. Lipo. "A magnetic relief scheme for four pole induction motors," in Proc. Int. Conf. on Electrical Machines, Converters and Systems, 1999, pp. I15-I21.
12 S. W. K. Khoo, R. L. Fittro, and S. D. Garvey, "AC polyphase self-bearing motors with a bridge configured winding," in Proc. 7th Int. Symp. Magn. Bearings., 2002, pp. 47-52.
13 S. W. K. Khoo, "Bridge configured winding for polyphase self-bearing ma-chines," IEEE Trans. Magn., vol. 41, no. 4, pp. 1289-1295, Apr. 2005.   DOI   ScienceOn
14 A. Chiba, K. Sotome, Y. Liyama, and M. A. Rahman, "A Novel Middle-Point-Current-Injection-Type Bearingless PM Synchronous Motor for Vibration Suppression," IEEE Tran. Indu. Appl. Vol. 47, no. 4, pp. 1700-1706, July/Aug. 2011.   DOI   ScienceOn
15 M. Kang, J. Huang, J.-Q. Yang, and H.-B. Jiang, "Analysis and experiment of a 6-phase bearingless induction motor," in Proc. 11th ICEMS, 2008, pp. 990-994
16 X. L. Wang, Q. C. Zhong, Z. Q. Deng and S. Z. Yue, "Current-controlled multiphase slice permanent magnetic bearingless motors with open-circuited phases: Fault-tolerant controllability and its verify-cation," IEEE Trans. Ind. Electron., vol. 59, no. 5, pp. 2059-2072, May 2012.   DOI   ScienceOn
17 J. Huang, M, Kang, and H. B. Jiang, "Novel bearingless machine with a single set of multiphase windings," Journal of Zhejiang University (Engineering Science), vol. 41, no. 11, pp. 1850-1856, Nov. 2007
18 H. B. Jiang, J. Huang, and M. Kang, "Principle and realization of a 5-phase PM bearingless motor drive," in IEEE IPEMC'09, 2009, pp. 1852-1857.
19 J. Huang, B. N. Li, H. B. Jiang and M. Kang, "Analysis and Control of Multiphase Permanent Magnet Bearingless Motor with single set of halfcoiled short-pitch winding," submitted for publication.
20 W. S. Bu, S. H. Huang, S. Wan, W. S. Liu, "General analytical models of inductance matrices of four-pole bearingless motors with two-pole controlling windings," IEEE Trans. Magn., vol. 45, no. 9, pp. 3316-3321, Set. 2009.   DOI   ScienceOn