• Title/Summary/Keyword: Coil shape

Search Result 264, Processing Time 0.031 seconds

Improvement of Dynamic Characteristics for Optical Pickup Actuator by Changing Coil Shape (코일형상 변화에 의한 광픽업 액츄에이터의 동특성 개선)

  • Kim Choong;Song Myeong-Gyu;Lee Dong-Ju;Park No-Cheol;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.69-70
    • /
    • 2005
  • In this paper, slim type optical pickup actuator was fabricated and its FE model was tuned to experimental results through precise coil models. In order to widen its control bandwidth, stiffness of moving parts was increased by changing shape of coil section. Finally, we checked that flexible mode frequency and gain margin was increased.

  • PDF

Helical coil springs property in Cu-Zn-Al shape memory alloy (Cu-Zn-Al 형상기억합금의 코일스프링 특성)

  • Kwon, Hee-Kyung;Choi, Chang-Soo;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.187-197
    • /
    • 1996
  • In this study, the properties of coil spring made by Cu-Zn-Al and B added shape memory alloys are investigated. The measurement of recovery displacement and energy with increasing weight, and thermocycling properties have been studied using displacement measuring device. Transformation temperature and phase change by thermocycling have been also investigated by DSC and X-ray diffractometer. Grain size of the alloy is refined from 1.2mm to $400{\mu}m$ by 0.06wt% of B addition. The maximum recovery energy of the coil spring for B added alloy is larger than that of no B added alloy, it is because of grain refinement. And shape memory ability of the coil spring by thermocycling decrease with increasing thermocycling after thermocycle under load. The degradation of shape memory properties of coil spring by thermocycling is improved by B addition.

  • PDF

Shape Optimization of a Thomson coil Actuator of Arc Eliminator Using Topology Modification (Topology Modification을 이용한 Thomson coil Actuator의 형상 최적화)

  • Li, Wei;Jeong, Young-Woo;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.774_775
    • /
    • 2009
  • The shape optimization of a Thomson coil actuator used in an arc eliminator is done for fast response by adopting topology modification method. The performance of the actuator is analyzed by using an equivalent circuit method. Both shape optimization and performance analysis are accomplished based on the segmentation of plate. The effectiveness of the proposed method is proved by the comparison of results before and after the shape optimization.

  • PDF

Shape Optimization of a Thomson Coil Actuator for Fast Response Using Topology Modification

  • Li, Wei;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.330-335
    • /
    • 2012
  • The shape optimization of a Thomson coil actuator used in an arc eliminator is done for fast response by adopting topology modification method. The displacement of the plate in a fixed calculation time is taken as the objective function. The objective function and contribution factor are calculated by using an adaptive equivalent circuit method which has been proved accurate and efficient. Both shape optimization and performance analysis are accomplished based on the segmentation of plate. Through the refinement of the sensitive segments a precise optimal plate shape can be obtained. The effectiveness of the proposed method is proved by the comparison of results before and after the shape optimization.

Shape Optimization of a Thomson Coil Actuator for Fast Response Using Topology Modification

  • Li, Wei;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • The shape optimization of a Thomson coil actuator used in an arc eliminator is done for fast response by adopting topology modification method. The displacement of the plate in a fixed calculation time is taken as the objective function. The objective function and contribution factor are calculated by using an adaptive equivalent circuit method which has been proved accurate and efficient. Both shape optimization and performance analysis are accomplished based on the segmentation of plate. Through the refinement of the sensitive segments a precise optimal plate shape can be obtained. The effectiveness of the proposed method is proved by the comparison of results before and after the shape optimization.

A Study on the Insertional Coil of MRI Device for Diagnosis (진단용 자기공명영상장치의 삽입 코일에 관한 연구)

  • Lee, Yong-Moon;Lim, Keun-Ho;Seo, Dae-Keon;Kim, Wang-Gon;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.33-37
    • /
    • 2003
  • Endovaginal and endorectal receiver only surface coil were designed for MR imaging(MRI) and $^1H$ MR spectroscopy(MRS) for the uterine cervix and the prostate. The shape of endovaginal coil wire was rectangular with round comer. The shape of endorectal coil wire was long elliptic shape during insertion and circular shape after insertion. Conventional spin echo and fast spin echo sequences were used as T1 and T2 weighted imaging sequences, respectively. 3D volume localized in vivo $^1H$ MR spectroscopy of the human cervix and prostate was performed using PRESS or STEAM localization method. Using home-built endvaginal and endorectal coils, excellent T1 and T2 images were obtained to visualize early cervical and prostate tumors. 3D volume localized in vivo $^1H$ MRS was useful to differentiate the cancerous tissue from the normal tissue.

  • PDF

Receiving Pad Identification Coil for Wireless Charging of Electric Vehicle (전기자동차 무선 충전용 수신패드 식별코일의 형상 설계 및 운용 방안)

  • Dong-Hyeon, Sim;Hyeon-Woo, Jo;Hun, Heo;Ju-A, Lee;Won-Jin, Son;Byoung-Kuk, Lee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.455-463
    • /
    • 2022
  • This study proposes a receiving pad identification coil for wireless charging of electric vehicles. The proposed coil identifies the shape of the receiving pad through magnetic coupling with the receiving pad. Therefore, the shape of the coil is designed to show the different magnetic properties of each receiving pad. The accuracy of this design is verified through finite element method simulation. Furthermore, the operation method of the secondary pad identification circuit is described, and the appropriate magnitude and length of the pulse voltage applied to this circuit for receiving pad identification are derived through simulation. The performance of the proposed identification coil set is verified by the experimental results.

Optimal Coil Configuration Design Methodology Using the Concept of Equivalent Magnetizing Current (등가자화전류를 이용한 최적코일형상 설계방법)

  • Kim, Woo-Chul;Kim, Min-Tae;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.43-49
    • /
    • 2007
  • A new electric coil design methodology using the notion of topology optimization is developed. The specific design problem in consideration is to find optimal coil configuration that maximizes the Lorentz force under given magnetic field. Topology optimization is usually formulated using the finite element method, but the novel feature of this method is that no such partial differential equation solver is employed during the whole optimization process. The proposed methodology allows the determination of not only coil shape but also the number of coil turns which is not possible to determine by any existing topology optimization concept and to perform single coil strand identification algorithm. The specific applications are made in the design of two-dimensional fine-pattern focusing coils of an optical pickup actuator. In this method, the concept of equivalent magnetizing current is utilized to calculate the Lorentz force, and the optimal coil configuration is obtained without any initial layout. The method is capable of generating the location and shape of turns of coil. To confirm the effectiveness of the proposed method in optical pickup applications, design problems involving multipolar permanent magnets are considered.

Endovaginal and Endorectal Surface Coils for in-ViVo Human MR Imaging and Spectroscopy (자궁경부암 진단용 MR 질내표면코일과 전립선암 진단용 MR 경직장표면코일의 제작 : 인체에서의 MR 영상과 MR 분광)

  • 문치웅;조경식
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.481-491
    • /
    • 1995
  • Endovaginal and endorectal receiver only surface coils were designed for MR imaging (MRI) and $^1H$ MR spectroscopy (MRS) for the uterine cervix and the prostate. The shape of endovaginal coil wire was rectangular with round corner. Size of the coil wire was empirically determined for 7cm and 4cm along the long and short axis, respectively. The coil wire loop was supported by acryl handle and bent about $150^{\circ}$ at one side of the loop considering the average angle of the cervix to the vagina. We called this as a "spoon-type endovaginal coil". The wire of the endorectal coil was made of the flexible materials so that the wire loop became long elliptic shape by pushing the acryl handle into the plastic tube for the comfort of patients when the coil was inserted into the cervix. Then, the shape was maintained to be circle by popping out handle. Conventional spin echo (SE) and fast spin echo (FSE) sequences were used as 71 and 72 weighted imaging sequences, respectively. Matrix size was 128~$256{\times}256$. FOVs for surface coil and body coil were 14cm and 24cm, respectively. 3D volume localized in vivo $^1H$ MR spectroscopy of the human cervix and prostate was performed using PRESS or STEAM localization method with the following parameters . TR=3 sec, TE=135 msec for PRESS or 30 msec for STEAM, NEX=2, NS=48, Sl=2048, and SW=2500 Hz. Using home-built endovaginal and endorectal coils, excellent T1- and T2-images were obtained to visualize early cervical and prostate tumors. 3D volume localized in vivo IH MRS was useful to differentiate the cancerous tissue from the normal tissue.

  • PDF

Effect of a Coil Shape on an Impulse Velocity of the Electromagnetic Welding (전자기 용접의 충돌 속도에 대한 코일 형상의 영향)

  • Park, H.;Lee, K.;Lee, J.;Lee, Y.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.135-144
    • /
    • 2019
  • Electromagnetic impulse welding (EMIW) is a type of solid state welding using the Lorentz force generated by interaction between the magnetic field of the coil and the current induced in the workpiece. Although many experimental studies have been investigated on the expansion and compression welding of tube using the EMIW process, studies on the EMIW process of lap joint between flat sheets are uncommon. Since the magnetic field enveloped inside the tube can be controlled with ease, the electromagnetic technique has been widely used for tube welding. Conversely, it is difficult to control the magnetic field in the flat sheet welding so as to obtain the required welding velocity. The current study analyzed the effects of coil shape on the impulse velocity for suitable flat one-turn coil for the EMIW of the flat sheets. The finite element (FE) multi-physics simulation involving magnetic and structural field of EMIW were conducted with the commercial software LS-DYNA to evaluate the several shape variables, viz., influence of various widths, thicknesses, gaps and standoff distances of the flat one-turn coil on the impulse velocity. To obtain maximum impulse velocity, the flat one-turn coil was designed based on the FE simulation results. The experiments were performed using an aluminum alloy 1050 sheets of 1.0mm thickness using the designed flat one-turn coil. Through the microscopic interfacial analysis of the welded specimens, the interfacial connectivity was observed to have no defects. In addition, the single lap joint tests were performed to evaluate the welding strength, and a fracture occurred in the base material. As a result, a flat one-turn coil was successfully designed to guarantee welding with bond strength equal to or greater than the base material strength.