Abstract
Endovaginal and endorectal receiver only surface coils were designed for MR imaging (MRI) and $^1H$ MR spectroscopy (MRS) for the uterine cervix and the prostate. The shape of endovaginal coil wire was rectangular with round corner. Size of the coil wire was empirically determined for 7cm and 4cm along the long and short axis, respectively. The coil wire loop was supported by acryl handle and bent about $150^{\circ}$ at one side of the loop considering the average angle of the cervix to the vagina. We called this as a "spoon-type endovaginal coil". The wire of the endorectal coil was made of the flexible materials so that the wire loop became long elliptic shape by pushing the acryl handle into the plastic tube for the comfort of patients when the coil was inserted into the cervix. Then, the shape was maintained to be circle by popping out handle. Conventional spin echo (SE) and fast spin echo (FSE) sequences were used as 71 and 72 weighted imaging sequences, respectively. Matrix size was 128~$256{\times}256$. FOVs for surface coil and body coil were 14cm and 24cm, respectively. 3D volume localized in vivo $^1H$ MR spectroscopy of the human cervix and prostate was performed using PRESS or STEAM localization method with the following parameters . TR=3 sec, TE=135 msec for PRESS or 30 msec for STEAM, NEX=2, NS=48, Sl=2048, and SW=2500 Hz. Using home-built endovaginal and endorectal coils, excellent T1- and T2-images were obtained to visualize early cervical and prostate tumors. 3D volume localized in vivo IH MRS was useful to differentiate the cancerous tissue from the normal tissue.