• Title/Summary/Keyword: Coil separator

Search Result 10, Processing Time 0.031 seconds

Superconducting magnet system of in-flight separator for a heavy ion accelerator planned in Korea

  • Kim, J.W.;Kim, D.G.;Jo, H.C.;Choi, Y.S.;Kim, S.H.;Sim, K.D.;Sohn, M.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.28-31
    • /
    • 2015
  • An in-flight fragment separator, which aims to produce and study rare isotopes, consists of superferric quadrupole triplets and $30^{\circ}$ dipole magnets to focus and bend the beams for achromatic focusing and momentum dispersion, respectively. The separator is divided into pre and main stages, and we plan to use superconducting magnets employing high-Tc superconductor (HTS) coils in the pre-separator area, where radiation heating is high. The HTS coils will be cooled by cold He gas in 20-50 K, and in the other area, superferric magnets using low-temperature superconductor (LTS) will be used at 4 K. A few LTS coils were wound and successfully tested in a LHe dewar, and the design of cryostat has been optimized. Development of the HTS coils is ongoing in collaboration with a group at KERI. An HTS coil of racetrack shape was wound and tested in a $LN_2$ bath and in a dewar with cryocooler. No degradation on critical current due to coil winding was found.

Development of Semicontinuous Measurement System of Ionic Species in PM2.5

  • Hong, Sang-Bum;Chang, Won-il;Kang, Chang-Hee;Lee, Jai H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1505-1515
    • /
    • 2009
  • A new method to semicontinuously determine $PM_{2.5}$ ionic species with a short time resolution is described in detail. In this system, a particle collection section (mixing part, particle collection chamber, and air/liquid separator) was developed. A Y-type connector was used to mix steam and an air sample. The particle collection chamber was constructed in the form of a helix coil and was cooled by a water circulation system. Particle size growth occurred due to the high relative humidity and water absorbed particles were efficiently collected in it. Liquid samples were drained out with a short residence time (0.08-0.1 s). The air/liquid separator was also newly designed to operate efficiently when the flow rate of the air sample was 16.7 L $min^{-1}$. For better performance, the system was optimized for particle collection efficiency with various types of test aerosols such as ($NH_4)_2SO_4,\;NaCl,\;NH_4HSO_4,\;and\;NH_4NO_3$. The particle collection efficiencies were almost 100% at different concentration levels in the range over 500 nm in diameter but 50-90% in the range of 50-500 nm under the following experimental conditions: 15 coil turns, a water flow rate for steam generation of 0.65 mL $min^{-1}$, and an air sample flow rate of 16.7 L $min^{-1}$. Finally, for atmospheric applications, chemical compositions of $PM_{2.5}$ were determined with a time resolution of 20 min on January 11-24, 2006 in Seoul, Korea, and the chemical characteristics of $PM_{2.5}$ ions were investigated.

Optimal Design for Injection Molding Processes using Design of Experiments and Finite Element Analysis (실험계획법과 유한요소해석을 연계한 사출성형 공정의 최적설계)

  • Park K.;Ahn J. H.;Choi S.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.150-153
    • /
    • 2001
  • The present work concerns optimal design for the injection molding process of a deflection yoke (coil separator). The optimal design for the injection molding process is developed using design of experiments and finite element analysis. Two design of experiments approaches are applied such as: the design of experiment for mold design and the design the experiments for determination of process parameters. Finite element analyses have been carried out as a design of experiments for mold design: runner system and cooling channel. In order to determine optimal process experiments have been performed for various process conditions with the design of experiments scheduling.

  • PDF

PLS-II separator the vacuum electron gun beam current emission test (PLS-II 전자총 진공이원화와 빔 전류 인출시험)

  • Son, Yoon-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1580-1581
    • /
    • 2011
  • The linear accelerator of Pohang Accelerator Laboratory(PAL) will drive a top-up mode operation in PLS-II(Pohang Light Source-II). Due to this kind of the operation mode, the electron gun is expected to have shorter life time of the cathode. Further in the PLS-II, two gate valves will be installed in front of the electron gun. The distance between the pre-bunching section and the electron gun will increase by 400 mm compared to the existing system due to the insertion of these gate valves. As a result the incident electron beam. One of the goals to improve the beam pulse width is by incorporating suitable biased voltage. In this paper, we will present test results of beam pulse width as a function of different biased voltage and focusing solenoid coil.

  • PDF

Magnet applications of HTS wires

  • Oh, Sang-Soo
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.27-34
    • /
    • 2000
  • HTS wires processed by PIT method are now available for magnet applications. But, those wires can not be used over 40 K due to weak link. This leads to necessity of development of coated conductor which can retain high $J_c$ at high field in liquid nitrogen. In this paper, various technical issues and the R&D status for both PIT wires and coated conductor were discussed. The difference of coated conductor's processes were also investigated and summarized. Various requirements for a design of HTS magnets were discussed. Anisostropic $J_c$ property with respect to magnetic field was considered to determine the coil's critical current. Low n value is a critical parameter to degrade a field stability with respect to time for a persistent mode HTS magnet. The relation between the margin of operation current and n value was investigated. Prototype HTS magnets with PIT wires are being developed for various applications such as crystal growth, MRI, magnetic separator and etc. HTS magnets will come into wide use in various fields of industries if the HTS wires with a low performance cost is developed.

  • PDF

Design Verification of the DY (Deflection Yoke) Using a CAI (Computer-Aided Inspection) Technique (전산역설계(Reverse Engineering) 기술을 이용한 편향코일(DY)의 설계 검증 연구)

  • 윤정호;전형환;최광일;김용환;이관행
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.22-30
    • /
    • 1998
  • The deflection yoke (DY) controls the direction of the electron beam that falls on the screen of the television monitor. Its quality depends on the shape and density of coils wound around the DY coil separator. Winding frames are used to make these coils, and therefore, their shapes are essential in making quality coils. A reverse engineering(RE) is applied to create the 3D model of the winding frame. It considerably shortens the design verification time and shows the level of accuracy that is feasible in the production mode. The paper explains each step of the reverse engineering process in detail.

  • PDF

STUDY ON THE PREVENTION METHOD FOR HEAT ACCUMULATION FOR PERSONAL RAPID TRANSIT (PRT) VEHICLE UNDER BODY (PRT 차량하부 열부하 저감방안 도출 연구)

  • Kwon, S.B.;Song, J.H.;Kang, S.W.;Jeong, R.G.;Kim, H.B.;Lee, C.H.;Seo, D.K.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 2013
  • Personal Rapid Transit (PRT) is the emerging personal transport vehicle operating on the loop automatically. The PRT system utilize the electrical power from super capacity or battery, it is important to manage the power or energy. In this regards, the management of high temperature occurred by the operation of system is significantly important to prevent from serious damage of component. In this study, we studied the adequate shape of underbody which can reduce the heat accumulation by pickup coil and condenser using natural air cooling. We suggested the additional air pathway, air inlet and flow separator to decrease the temperature of the heat source components. It was found that suggested system can decrease the temperature of PRT under body by 16% during the static mode and by 10% during the running mode at 30km/h. It is expected that the findings of this study will feed into final design of newly built Korean PRT vehicle.

Development of the Integrated Information System for 3D Product Design/RP/CAE/3D Mold Design/Tooling (3차원 설계/RP/CAE/3차원 금형설계/제작 정보일원화시스템 개발)

  • 윤정호;전형환;안상훈;조명철
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.35-43
    • /
    • 1997
  • Concurrent Engineering is one of the methods which are used for the rapid product development. One of the important features in Concurrent Egineering is that the development process is to be parallel and the organization should be cross-functional. In order that the process be parallel and that the organization be cross-functional, an integrated information system such as PDM (Product Data Management) is required. Although the integrated data base is constructed, it could be meaningless if the application softwares were not inter-operable. This study shows an example of intergrated information system from three-dimensional product design to mold design and tooling for the development of Deflection Yoke(DY) which is one of the important parts of Cathode Ray Tube(CRT). A three-dimensional product design software, which is based on a commercial code, has been developed by ourselves. Selective Laser Sintering(SLS), which is one of the rapid prototyping techniques, has been used in this study. Mold design has been done by the three-dimensional way. A newly developed method of mold tooling, which is called Quick Die Manufacturing(QDM), has been introduced.

  • PDF

Magnetic field characteristics from HTS quadruple magnet of in-flight separator for a heavy ion accelerator

  • Zhang, Zhan;Lee, Sangjin;Jo, Hyun Chul;Kim, Do Gyun;Kim, Jongwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.23-27
    • /
    • 2015
  • Quadruple magnet is an essential component for the accelerator, and the field uniformity in the good field region reflects the quality of quadruple magnet. In this paper, the total magnetic field B was separated into the coil-induced magnetic field $B_s$ and the iron-induced magnetic field $B_c$ to explain why the total magnetic field B has some inhomogeneity. Using Fourier analysis, harmonic components of $B_s$, $B_c$ and B have been analyzed at good field region, respectively. The harmonics of multipole magnet and Fourier analysis are helpful to show the uniformity of magnetic field. Several geometries of yoke and coils were defined to analyze the effect on field uniformity of an HTS quadruple magnet. By the analysis, it was found that the sixth harmonics which is the main factor of field inhomogeneity can be reduced to zero. It means that the sixth harmonics of the magnetic field B can be removed by adjusting the geometry of the magnet pole and the position of coils. We expect that this result can effectively improve the uniformity of an HTS quadruple magnet.

A study on the characteristic of vegetables temperature in the pre-cooling vacuum unit (진공 예냉장치 내에서의 야채류의 온도 변화 특성에 관한 연구)

  • Won, Jong-Ho;Park, Sang-Gyun;Yoon, Seok-Hoon;Oh, Cheol
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.879-884
    • /
    • 2007
  • This study is to observe the change of temperature and relative humidity for various vegetables in vacuum precooling system. The materials for experiments were the lettuce, chinese cabbage, pak choi and cabbage. The experimental apparatus was constructed of vacuum chamber, vapor/water separator, water tank, pumps ejecting and cooling water circulation, refrigerator unit, cooling coil for water cooling, Hygrometer and Data logger measuring of the temperature change. The experiments were operated in 20torr and recorded every 3 minutes. It was found that the cooling temperature and speed of vegetables are depending on the percentage of its water content. The more water contains, the faster cooling speed and the lower cooling temperature.