• 제목/요약/키워드: Coil performance

검색결과 601건 처리시간 0.023초

Double-Loop Coil Design for Wireless Power Transfer to Embedded Sensors on Spindles

  • Chen, Suiyu;Yang, Yongmin;Luo, Yanting
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.602-611
    • /
    • 2019
  • The major drawbacks of magnetic resonant coupled wireless power transfer (WPT) to the embedded sensors on spindles are transmission instability and low efficiency of the transmission. This paper proposes a novel double-loop coil design for wirelessly charging embedded sensors. Theoretical and finite-element analyses show that the proposed coil has good transmission performance. In addition, the power transmission capability of the double-loop coil can be improved by reducing the radius difference and width difference of the transmitter and receiver. It has been demonstrated by analysis and practical experiments that a magnetic resonant coupled WPT system using the double-loop coil can provide a stable and efficient power transmission to embedded sensors.

유한요소법을 이용한 권취강판 적재운송용 Wedge의 내구성에 관한 연구 (A Study on the Durability of a Wedge for Transportation of Rolled Steel Plates Using FEM)

  • 곽이구;김홍건
    • 한국생산제조학회지
    • /
    • 제18권3호
    • /
    • pp.328-335
    • /
    • 2009
  • In order to 1ransport the steel roll coil effectively and safely to the destination, the stability of the steel roll coil which induced the minimum movements during the 1ransportation was s1rongly required. The basic 1ransportation equipment for the steel roll coil such as the wedge is made of 100% imported wood known as the apitong. However, the material characteristic such as the rigidity has caused permanent damages to the steel roll coil and the damaged steel roll coils were not easily restorable. Thus it was unsuitable for other purposes. The introduction of new materials to manufacturing wedges which would have a good recovery performance and thus enable the wedge prevention or reduction to the steel roll coil or any other products during the 1ransportation is needed. Due to the fact that recovering damage of the coil is almost impossible, we have to find the new type of wedge that can substitute the apitong wedge. Therefore, we are going to develop a wedge that does not damage rolled steel coil and has better recovery and softness than existing apitong wedge.

  • PDF

반도체 소자를 이용한 테슬라 코일의 설계 및 제작 (A Study on Design and Implementation of the Tesla Coil using Semiconductor Device)

  • 김영선;김동진;이기식
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1571-1576
    • /
    • 2016
  • A Tesla coil is an electrical resonant transformer circuit invented by Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high frequency alternating-current electricity. Tesla coil can generate a long streamer with several million volts of electricity as a high voltage device. It is basically consists of a voltage transformer, high voltage capacitor, spark gap, primary coil, secondary coil and toroid. It is difficult to appear in the output size of the streamer is controlled by the spark gap. The general decision method of the length of streamer is to display the electric output in accordance with the design specifications in initial development plan. Design specifications and the electric output is determined by the application of facilities. In this paper the spark gap is replaced with periodic switching semiconductor device to control output voltage easily in order to apply overvoltage protective circuit due to a secondary coil and a performance test. In these days, their main use is for entertainment and educational displays of the museum, although small coils are still used as leak detectors for high vacuum systems.

수평 회전 히트파이프에서 내부 삽입 코일이 유동 형태 및 열전달 성능에 미치는 영향에 대한 실험 연구 (An experimental study on the effects of an inserted coil on flow patterns and heat transport performances for a horizontal rotating heat pipe)

  • 이진성;김철주;김선주;문석환
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.763-772
    • /
    • 1998
  • The effects of an inserted coil on flow patterns and heat transport performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low RPM(less than 1,000 RPM), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing RPM. The pumping effects for RHP with an inserted coil resulted enhancement both in condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher RPM(above 1,000∼1,200) with the transition of flow regime to annular flow.

  • PDF

SQUID 2차미분기 성능 평가용 균일자기장 및 2차 미분 자기장 발생원 (Sources of uniform and 2nd-order gradient fields for testing SQUID performance)

  • 이순걸
    • Progress in Superconductivity
    • /
    • 제8권2호
    • /
    • pp.152-157
    • /
    • 2007
  • Uniaxial square Helmholtz coils for testing SQUID sensors were designed and their field distributions were calculated. Optimum parameters for maximizing the uniform region in the Helmholtz mode were obtained for different uniformity tolerances. The coil system consists of 2 pairs of identical square loops, a Helmholtz pair for generating uniform fields and the other for the 2nd-order gradient fields in combination with the Helmholtz pair. Full expressions of the axial component of the field were calculated by using Biot-Savart's law. To understand the behavior of the field near the coil center, analytical expressions were obtained up to the 4th-order in the midplane and along the coil axis. The Helmholtz condition for generating uniform fields was calculated to be $d/{\alpha}=0.544505643$, where 2d is the inter-coil distance and $2{\alpha}$ is the side length of the coil square. Maximized uniform range can be obtained for a given nonuniformity tolerance by choosing $d/{\alpha}$ slightly lower than the Helmholtz condition. The pure second-order gradient field can be generated by subtracting the Helmholtz field from the field of the 2nd pair with equal magnitudes of the center fields of the two pairs. The coil system is useful for testing balance and sensitivity of SQUID gradiometers.

  • PDF

10 MW급 초전도 풍력발전기 계자코일 전자장 해석 (Magnetic Field Analysis of the Field Coil for 10 MW Class Superconducting Wind Turbines)

  • 김지형;박사일;김호민
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권3호
    • /
    • pp.18-22
    • /
    • 2012
  • This paper presents the magnetic field analysis of the racetrack double pancake field coil for the 10 MW class superconducting wind turbine which is considered to be the next generation of wind turbines using the 3 Dimensional FEM(Finite Elements Method). Generally, the racetrack-shaped field coil which is wound by the second generation(2G) superconducting wire in the longer axial direction is used, because the racetrack-shaped field coil generates the higher magnetic field density at the minimum size and reduces the synchronous reactance. To analysis the performance of the wind turbines, It is important to calculate the distribution of magnetic flux density at the straight parts and both end sections of the racetrack-shaped high temperature superconductivity(HTS) field coil. In addition, Lorentz force acting on the superconducting wire is calculated by the analysis of the magnetic field and it is important that through this way Lorentz force can be used as a parameter in the mechanical analysis which analyzes the mechanical stress on the racetrack-shaped field coil.

인덕션 쿡탑 기구물 형상변경이 Heatsink 및 Coil 냉각성능에 미치는 영향에 대한 연구 (Study on the Cooling Performance of Heatsink for Induction Cooktop using Computational Fluid Dynamics)

  • 박동호;권명근;이동범;서응렬;박용종
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.33-37
    • /
    • 2015
  • A numerical study on the IPM/Bridge Diode cooling and coil cooling has been performed. Results are presented as plots of thermal resistance, temperature drop and RPM-ratio. CFD analysis for conventional cooling system has been performed as a reference case. As the RPM-Ratio was increased, heatsink thermal resistance and coil temperature were decreased. IPM/Bridge Diode thermal resistance and temperature of the coil is tended to be trade-off. The temperature of coil closest to the AC-motor fan showed the most significant change in accordance with duct design. The temperature of coil located at the top of DC-motor fan showed the most significant variation as the cooling air passes the heatsink fin area.

An Experimental Study on the Effects of ...an Inserted Coil on Flow Patterns pd. Beat Transport Performances for a Horizontal Rotating Heat Pipe

  • Lee, Jin-Sung;Kim, Chul-Ju;Kim, Bong-Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권1호
    • /
    • pp.50-61
    • /
    • 2000
  • The effects of an inserted coil on flow . patterns and heat transfer performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low rpm(less than 1,000rpm), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing rpm. The pumping effects for RHP with an inserted coil resulted in the enhancement in both condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher rpm(above 1,000-1,200) with the transition of flow regime to annular flow.

  • PDF

원격 생체 측정 장치를 위한 다중 발신 코일 구동 드라이버 설계 (Design of a Multiple Transmit Coil Driver for Implantable Telemetry Devices)

  • 유영기
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.609-614
    • /
    • 2015
  • Implanted telemetry systems provide the ability to monitor different species of animals while they move within their cages. Species monitored include mice, rats, rabbits, dogs, pigs, primates, sheep, horses, cattle, and others. A miniature transmitter implanted in each animal measures one or more parameters. Parameters measured include arterial pressure, intra-pleural pressure, left ventricular pressure, intra-ocular pressure, bladder pressure, ECG, EMG, EEG, EOG, temperature, activity, and other parameters and transmits the data via radio frequency signals to a nearby receiver. Every conventional dedicated transmitter contains one or more sensors, cpu and battery. Due to the expected life of the battery, the measuring time is limited. To overcome these problems, electromagnetic inductive coupling based wireless power transmission technology using multiple transmit coils were proposed, with each coil having a different active area driven by the coil driver. In this research, a parallel resonance based coil driver and serial resonance based coil driver are proposed. From the experiments we see that the parallel coil driver shows better performance under a low impedance and multiple coils configuration. However, the serial coil driver is more efficient for high impedance transmit coils.

나선코일튜브내의 강제대류 열전달에 관한 연구 (Study on forced convective heat transfer in helically ceiled tubes)

  • 한규일;박종운;임태우
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.282-291
    • /
    • 1998
  • Heat transfer performance are studied for the turbulent flow of water in 3 smooth tube coils having ratios of coil to tube diameter of 16, 21 and 27, and a corrugated-coiled tube having a ratio of coil to tube diameter of 29, for Reynolds numbers from 8000 to 60000 and is also compared with the limited results available to data. The experiments are carried out for the fully developed turbulent flow of water in tube coils under the condition of uniform heat flux. This work is limited 0 tube coils of R/a between 10 and 30. The tube having a ratio of coil to tube diameter of 27 among the 3 smooth tube coils shows the best heat transfer performance. The performance of coiled tube best transfer performance. The performance of coiled tube with a similar curvature ratio is better for a corrugated-coiled tube(R/a=17) than for a smooth coiled tube(R/a=16). An empirical relation which correlates most of the data within $\pm$25% was also developed. Test result shows that the Nusselt number is found to be affected by a secondary flow due to curvature.

  • PDF