Progress in Superconductivity Vol.8 No.2 pp152-157 30 April 2007

Sources of uniform and 2nd-order gradient fields for testing
SQUID performance

Soon-Gul Lee

Korea University, Chungnam, Korea

Received 16 February 2007

23} v)E A7) LAY
ol & 4

Abstract

Uniaxial square Helmholtz coils for testing SQUID sensors were designed and their field distributions were calculated.
Optimum parameters for maximizing the uniform region in the Helmholtz mode were obtained for different uniformity
tolerances. The coil system consists of 2 pairs of identical square loops, a Helmholtz pair for generating uniform fields and
the other for the 2nd-order gradient fields in combination with the Helmholtz pair. Full expressions of the axial component of
the field were calculated by using Biot-Savart's law. To understand the behavior of the field near the coil center, analytical
expressions were obtained up to the 4th-order in the midplane and along the coil axis. The Helmholtz condition for
generating uniform fields was calculated to be d/a=0.544505643, where 2d is the inter-coil distance and 24 is the side length
of the coil square. Maximized uniform range can be obtained for a given nonuniformity tolerance by choosing d/a slightly
lower than the Helmbholtz condition. The pure second-order gradient field can be generated by subtracting the Helmholtz field
from the field of the 2nd pair with equal magnitudes of the center fields of the two pairs. The coil system is useful for testing
balance and sensitivity of SQUID gradiometers.

Keywords : Helmholtz coil, SQUID gradiometer.
L. Introduction the evaluation of the devices. The purpose of this
article is providing bases for designing one's own
field sources that are compact but sophisticated

enough to meet the precision requirements for
SQUID tests.

During the course of studying SQUID sensors, one
may often encounter lack of proper field sources for
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In our studies on the 2nd-order YBCO SQUID
gradiometer [1, 2], sources of uniform fields and the
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2nd-order gradient fields were essential to the
characterization of the device.
gradient sensitivity are the key issues for the
evaluation of the 2nd-order SQUID gradiometer.
Testing of those properties requires uniform fields
and 2nd-order gradient fields. A quick way to
generate field distributions is using a current loop. At
a position far away from the loop, the field is
approximately uniform. One may also use the same
coil for testing gradient sensitivity of SQUID
gradiometers. However, since such a loop generates
fields that contain all orders of gradients, it may be
all right for a rough quick test but is not suitable for
accurate assessment of SQUID sensors.

Usually, for the purpose of generating uniform
fields, a circular-loop Helmholtz-coil system is used.
The Helmholtz condition for the circular coils is that
the inter-coil distance is equal to the coil radius [3].
In comparison with a circular-loop coil system, a

Balancing and

square-loop coil system has relative advantages, such
as easier construction and central accessibility. Basic
design of a square Helmholtz coil has been reported
by Firester [4].

In this work I have analyzed the square-loop coil
system theoretically and calculated the optimum
parameters to maximize the uniform field zone.
Previously, we studied fabrication of a four-square-
loop uniaxial Helmholtz coil system and measured
field distributions in both Helmholtz and 2nd-order
gradient modes [5, 6]. In this paper I report results of
more claborate calculations, especially the parameter
conditions for maximized uniform field zone.

I1. Square Helmbholtz coil

A schematic of the square-loop Helmholtz coil is
shown in Fig. 1. In balancing, an axial gradiometer
requires a uniform z-componet along the z-axis and a
transverse gradiometer requires a uniform
z-component in the xy plane. By symmetry, only the
z-component of the field survives in the xy plane and
along the z-axis. Since the 2nd-order gradiometer we
are studying is a transverse type, the calculations and
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Fig. 1. A schematic of the square-loop Helmholtz coil.

analyses are focused on the z-component of the fields
in the xy plane. For axial SQUID gradiometers, I also
calculated the z-component along the z-axis. A full
analytic expression of the magnetic field is obtained
in all space using the Biot-Savart’s law.

In Fig. 1, for a one-turn coil pair with current /
flowing counterclockwise, the fields in the xy plane
and on the z-axis are:
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Equation (1) is for the xy-plane and (2) for the z-axis.
The field was calculated in the xy-plane for different
ratios of d to a, denoted by y (= d/a), and plotted in
Fig. 2. For y 2 y (= 0.544505643), field decreases
monotonically as the point moves away from the coil
center. On the other hand, for y <j, it has a shallow
local minimum at the origin. Field along the z-axis
decreases monotonically as z increases.
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Fig. 2. Surface plots of the field in the xy plane for different
ratios of d to a, denoted by y: (top) y=y, and (bottom)
y=0.7yo. Note that field decreases monotonically as the
point moves away from the origin for y=y, and it has a
local minimum at the origin for y=0.7v,.

By Taylor expansion, asymptotic forms of (1) and
(2) are obtained as following:
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In (3) and (4), the second-order terms vanishes for
1=Y0=0.544505643, which is the Helmholtz condition.
Helmboltz fields are reduced to:
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The fields along the x-axis and the z-axis are plotted
in Fig. 3. In the figure, both fields near the center are
biquadratic as expected in (6) and (7). The
biquadratic dependence persists in a quite large
extent up to x/a~0.4 and z/d~0.4. For a nonuniformity
tolerance of 10, the uniform region is x/a<0.125 for
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Fig. 3. Field distributions of the Helmholtz coil at y=y,
along the x-axis and the z-axis. Note that the fields are
biquadratic near the center.
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Fig. 4. Field distributions along the x-axis for different
values of y. Field changes monotonically for y>y, and
changes sign for y<y, due to the local minimum at the
center.

the transverse field and z/d<0.194for the axial field.
The uniform region for the transverse field can be
further expanded by choosing y less than 1,
depending on the nonuniformity tolerance.

Fig. 4 shows distributions of the transverse field
for different values of y. For y>1, the field
distribution becomes quadratic near the coil center
and the nonuniformity increases with increasing 7.
On the other hand, for y<l, the field distribution
function has a shallow minimum at the center as
shown in Fig. 2 (b). In Fig. 4, the relative field
changes sign from - to + inside the position where the
field has the same magnitude as that of the coil center
and becomes gquadratic with larger magnitudes
compared with the Helmholtz field. For a given
nonuniformity tolerance, one can get a uniformity
range wider than that of the Helmholtz case.

Fig. 5 shows the distributions of off-the-
Helmholtz-fields for 3 different values of
nonuniformity tolerance, 10, 103, and 10, For the
tolerance of 107, the largest uniformity range,
|x/a}<0.193, can be obtained at y=0.984y,. This range
is 54 % larger than the Helmholtz range of
|x/aj<0.125. For the other two tolerances, optimum
values of y and the uniformity range &(=x/a) are
shown in Table 1 in comparison with the Helmholtz
values. In any case, a larger uniformity range is
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Fig. 5. Field distributions for 3 different values of y, 0.984,
0.95, and 0.85, at which the uniform range is maximum for
nonuniformity tolerances (£), 10, 107, and 10

Table 1. Uniformity ranges for 3 values of uniformity

tolerances. 8=x/a.

Tolerance Optl;num i:;n;(g 3(yo) | B(y)/d(vo)
10 0.984 0.193 0.125 1.54
10° 0.95 0338 | 0.221 1.53
107 0.85 0.567 0.385 1.47

guaranteed. These results are useful for those who
want to prepare uniform field sources in a limited
experimental space. Less use of materials, easier
construction, and easier central access are additional
advantages.

Axial fields are monotonic for all values of y and
the deviation becomes larger as y increases. The
Helmholtz field has the largest uniformity region.

I11. Second-order gradient coil

Equations (3) and (4), and Fig. 4 show that coil
pairs with off-the-Helmholtz-condition (y#y,) have a
nonzero quadratic term. Combining these coils with
the Helmholtz pair can generate pure second-order
gradient fields. Fig. 6 shows a schematic of a four-
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Fig. 6. A schematic of the four-identical-square-loop coil

system for generating the second-order gradient fields.

square-loop coil system generating the pure second-
order field gradients. AA is a Helmholtz coil pair of
N, turns and BB is an off-the-Helmholtz-condition
pair of Np turns. If current / flows in opposite
directions in those two pairs and the number of turns
N, and Ngare chosen so that the central fields cancel
each other, the first nonzero term is quadratic and
thus the system becomes a source of the second-order
gradient fields. The system becomes a uniform field
source by running the current only in the Helmholtz
pair AA. The four-loop coil system can be used for
both Dbalancing test and gradient sensitivity
measurement of second-order SQUID gradiometers.

Fig. 7 shows the results of calculation for both
transverse and axial fields with Ny/Ng = 1.2,
Ya=Ye¢=0.5445 and yg=0.3515. In both cases, the ficlds
are quadratic dependence on the position up to x/a,
z/d = 0.35. Outside the quadratic region, while the
axial field increases monotonically, the transverse
field reaches a maximum at around x/¢=0.75 and then
decreases abruptly. Except near the coil edges, the
fields are calculated as following:
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Fig. 7. Field distributions of the 2nd-order gradient mode
for Na/Ng= 1.2 at the optimized condition, y,=y,=0.5445,
and yp=0.3515.
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Results of experiments based on these calculations
well agreed with theory and have been reported in

[5].6].

IV. Summary

A uniaxial four-identical-square-loop coil system
was designed for evaluating SQUID properties and
the field distributions have been calculated by using
Biot-Savart's law. The system consists of 2 pairs of
identical square loops, one for producing Helmholtz
fields and the other for 2nd-order gradient fields in
combination with the Helmholtz pair. The Helmholtz
condition was calculated to be d/a=0.544505643.
Maximized uniform range for a given nonuniformity
tolerance was obtained by choosing d/a slightly
lower than the Helmholtz condition. Expression of
the pure second-order gradient field was obtained by
subtracting the Helmholtz field from the field of the
off-the-Helmholtz 2nd pair with equal magnitudes of
the center fields of the two pairs. The coil system is
useful for testing balance and sensitivity of SQUID
gradiometers.
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